如图,三角形abc和三角形ade都是等腰之间三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:49:57
中线:作bc的中点d,连接ad;高:过c点作ab的垂线,交ab的延长线于f,连接cf;角平分线:作角b的二分之一角交ac于点e,连接be
证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(
你题目肯定搞错了,这两个三角形不可能相似我们原来都是证明DE∥BC的. 证明:∵∠B=∠C,AB=AC,∠DAB=∠EAC∴△ABF全等于△ACG(ASA)∴AF=AG,即△AFG也是等腰三角形∴∠
方法一:∠DAE=1/2*(∠C-∠B)90°=∠DAE+∠AED=∠DAE+∠EAC+∠C=∠DAE+1/2*∠BAC+∠C=∠DAE+1/2*(180°-∠A+∠C)+∠C整理得∠DAC=1/2(
证明:因为AD=BD∴∠B=∠1∵∠ADC=∠B+∠1∴∠ADC=2∠1∵∠1=∠2∴∠BAC=2∠1=∠ADC∵∠C=∠C∴△ACD∽△BCAE还是不清楚
∵△ABC和△CDE为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,又BCD在一条直线上,∴∠ACD=∠BCE=∠DCE+∠ACE=∠ACB+∠ACE,∴△ACD≌△BCE(边角边
△ABC和△BDE都是等边三角形∴∠ABD=∠CBE=60AB=BCBD=BE(边角边相等)∴△ABD全等于△CBE∴AD=CE
结果是3△BEC面积是△BAC的一半,即是6(两三角形同底BC,可分别过A、E向BC做高,E为中点,则高的比是2:1,面积同高比)△BEF面积=△BCF面积=½△BEC面积=3(由B做三
∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠
等下再答:∵△ABC和△ADE是等边三角形∴AD=AE,AB=AC∠BAC=∠DAE=60°∠BAD+∠DAC=∠EAC+∠DAC∴∠BAD=∠EAC(等式的性质)在△BAD和△CAE中AD=AE∠B
证AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高DE=DF∠DEA=∠DFA=90°AD=AD △AED≌△AFD AE=AF AD是三角形ABC的角平分线
全等再答:共用了AC再答:三边全等可证明三角形全等再问: 再问:给你个阿狸
延长AD到E,使DE=ADABD全等于CEDCE=3AE=4AC=5所以角AEC=90度DE=2CB=2CD=2倍的根号13
(1)直角三角形,斜边中线等于斜边的一半,周长=DFA+AED=CA+AB=18(2)EF//BC,AD垂直于BC,所以EF垂直于AD
考点:全等三角形的判定与性质.专题:证明题.分析:根据全等三角形的判定:三组对应边分别相等的两个三角形全等(SSS);有两边及其夹角对应相等的两个三角形全等(SAS);有两角及其夹边对应相等的两个三角
哪一页?再问:93页第十题再答:
AD平行CB,AD=CB,求证:三角形ABC全等三角形CDA证明:∵AD∥BC,∴∠2=∠3,在△ABC和△CDA中,∠1=∠4AC=CAAD=CB,∴△ABC≌△CDA(边角边).
ADBEBF分别为三角形ABC三角形ABD三角形BCE的中线三角形BCD的面积=三角形ABC的面积的个一半=6三角形BCE的面积=三角形BCD的面积的个一半=3三角形BEF的面积=3