如图,三角形ABC内接与圆O,bc=4,CA=3,角A-角B=90°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:40:52
(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3
三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C
﹢伤心啊常常常常常常常常常常常常常常常常吃
显然∠AOC=2∠Bsin∠B=sin∠AOC/2=4/5则cos∠AOC=cos2∠B=1-2sin²∠B=-7/25画图有OA向量-OC向量=CA向量则(OA向量-OC向量)²
证明:∵AE是⊙O的直径∴∠ABE=90°∴∠BAE+∠AEB=90°∵AF⊥BC∴∠ADC=90°∴∠CAF+∠ACB=90°∵∠AEB=∠ACB(同弧所对的圆周角相等)∴∠BAE=∠CAF∴BE=
相等证明:连接BE∵AE是直径∴∠ABE=90°∵AD⊥BC∴∠ADC=90°∴∠B+∠BAE=∠C+∠CAD∵∠E=∠C∴∠BAE=∠CAD
关于如图,三角形ABC内接于圆O
在叙述中,D在AC上,E在BC上,F在AB上.连接CO,由切线长定理,OC平分∠ACB,∴∠OCE=30°,∵∠CEO=90°,∴CE=3,∴BF=BE=8-3=5,∵CD=CE,∴CD=3,∴AF=
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
延长BO交Ac于E,∠BEC=∠A+∠ABE,∠BOC=∠BEC+∠ACO故∠BOC=∠A+∠ABE+∠ACO可知角BOC大于角A
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC
我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π
连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2
∵∠ABC=∠ADC,∠BAD=∠BCD,∴△AMB∽△DMC.
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
1、DE与圆O相切.因AD平分∠BAC,所以∠BAD=∠CAD,所以弧BD=弧CD,连接DO,则DO垂直平分BC,因DE//BC,所以OD垂直DE,所以DE与圆O相切.2、连接BO,交圆O于G,连接A
连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE
证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B