如图,三角形abc中,e是内心,ae延长线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:34:24
如图,三角形abc中,e是内心,ae延长线
已知如图三角形ABC中,点E为内心延长AE交三角形的外接圆点D,求证DB=DC=DE

内心是三角形三条角平分线的交点,所以AD,BE分别是角BAC和ABC的角平分线;角BAD=DAC,则弧BD=CD,即弦BD=CD;角DBC=DAC(同弧圆周角)角DBE=DBC+CBE=DAC+CBE

急求解这道数学题如图,点e是三角形abc的内心,ae交边bc于点f,交三角形abc外接圆于点d.求证:ed是ad和df的

证明:连接BE∵E是△ABC的内心∴∠ABE=∠CBE,∠BAD=∠CAD∴弧BD=弧CD∴BD=CD∵∠BED=∠BAD+∠ABE,∠EBD=∠EBC+∠CBD又∵∠CBD=∠CAD=∠BAE∴∠D

如图,E是三角形ABCC的内心,AE的延长线交三角形三角形ABC的外接圆与D,求证 DE=DB=DC

已知,E是三角形ABC的内心,可得:∠DAB=∠DAC,∠EBA=∠EBC.因为,∠DBE=∠DBC+∠EBC=∠DAC+∠EBC=∠DAB+∠EBA=∠DEB,所以,DB=DE.因为,∠DAB=∠D

如图,点I是三角形ABC的内心,线段AI 的延长线交三角形ABC的外接圆于点D,交BC边于点E.求证ID=BD,BD平方

(1)证明:∵∠BID=∠IBA+∠BAI(外角等于不相邻二内角和)∵I是内心,即是角平分线的交点,∴BI平分∠B,AI平分∠A,∴∠BID=(∠A+∠B)/2∵∠IBD=∠IBE+∠EBD,∠EBD

如图,点I是三角形ABC的内心,AI的延长线交边BC于点D,交三角形ABC外接圆O于点E,连BE、CE.

(1)∵∠BAD=∠ECD,∠ABD=∠CED,∴△ABD∽△CED,∴CD:AD=CE:AB,∴CD=3.证明:(2)连接IB.∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠CBI,∴弧

三角形三条内角平分线交于一点,这点称为三角形的内心,图中D是△ABC的内心,E是△ABD的内心,F是△BDE的内心,若∠

∠BDE=1/2*(180度-1/2*(∠A+∠B))(1)∠BFE=180度-1/2*(180度-∠BDE)(2)联立(1)(2)可得∠BFE=135度-1/8*(∠A+∠B)∵∠A+∠B135度-

如图,在△ABC中,AC=BC,E是内心,AE的延长线交△ABC的外接圆于D.

证明:(1)∵AC=BC∴∠CAB=∠CBA,又∵E是内心,∴∠1=∠2=∠3=∠4.∴BE=AE;(2)∵∠BED=∠1+∠3,∠EDB=∠2+∠5,又∵∠5=∠4,∴∠BED=∠EDB,∴BD=D

如图 在三角形ABC中,E是内心,AE的延长线与三角形ABC的外接圆相交于D,求证:DE=DB=DC

(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA

如图,三角形ABC中,I是内心,AI交BC于D,交三角形ABC的外接圆于E.求证:(1)IE=CE=BE;(2)IE的平

1.利用相等的圆周角所对的弧相等等弧对等弦去证明CE=BE,用等角对等边,内心性质,同弧所对的圆周角相等去证明IE=BE;2.通过△BED∽△AEB来证明结论

如图,在三角形ABC中,E是内心,AE的延长线和三角形ABC的外接圆相交于D,求证:DE=DB=DC.

(1)由E是△ABC内心,∴AE,BE,CE是三内角平分线交点.∴∠BAD=∠CAD,∴BD=CD(同圆或等圆中,圆周角相等,所夹弦相等).(2)∵∠BAD=∠CAD=∠CBD由∠BED=1/2∠BA

如图,三角形ABC中,∠ABC=50°,∠ACB=75°,点O是内心,求∠BDC的度数

内心:三角形里面画的内切圆的圆心.圆的半径相等,也就是BO、OC为∠ABC、∠ACB角平分线.所以:∠CBD=25°∠BCD=37.5°三角形内角和180°,所以∠BOC=117.5°

已知如图三角形ABC中,点E是内心,延长AE交三角形的外接圆于点D求证DB=DC=DE

因为E是内心,所以EA、EB分别为∠A和∠B的角平分线,即∠BAD=∠DAC=∠A/2,∠ABE=∠EBC=∠B/2所以BD=CD因为∠DAC和∠DBC对应同一段外接圆弧CD,所以∠DBC=∠DAC=

如图,点I是三角形ABC的内心,AI的延长线BC于点D,

已知I是三角形ABC的内心,故∠IAB=∠IAC,∠IBA=∠IBC.又∠CBE=∠CAE(圆周角相等),故∠CBE=∠IAB.又因∠EBI=∠CBE+∠IBC,∠EIB=∠IAB+∠IBA,故∠EB

如图,点I是三角形ABC的内心,AI交BC于点D,交三角形外接圆于点E.求证:IE=BE

延长BI,交圆I于F∵I为三角形的内心∴∠BIE=2∠BAE=2∠EAC,∠FBC=∠FBA∴∠FBC=1/2∠AIF=1/2∠BIE又同弧所对圆周角相等∴∠EBC=∠EAC=1/2∠BIE∴∠BIE

如图,已知E是三角形ABC的内心(即角平分线交点)角BAC的平分线交BC于点F,且与三角形ABC的外接圆相交于点D

1,∠BAE=∠CAD  ∠ABE=∠EBC∠DEB=∠BAE+∠ABE=∠CAD+∠EBC  ∠CAD=∠CBD∠DEB=∠CBD+∠EBC=∠DBE故∠DB

如图,三角形ABC中,I是内心,AI交BC于D,交三角形ABC的外接圆于E.若AB=3,AE=5,AC=2,求四边形AB

用余弦公式,设BE=xcos角DAB=(4+25-x²)/2*2*5cos角DAC=(9+25-x²)/2*3*5两个方程,两个解能求出每个边长三边都知道了,面积就会了吧,

如图,在△ABC中,E是内心,AE的延长线和△ABC的外接圆相交于D,求证:DE=DB=DC.

证明:∵三角形的内心是角平分线的交点∴∠BAD=∠CAD∴BD=CD(等角对等弦)∵∠CED=∠ACE+∠CAD∠DCE=∠BCE+∠BCD∠ACE=∠BCE∠CAD=∠BAD=∠BCD(等弧对等角)

如图,在三角形ABC中,AB=AC,点D、E分别是

1,三角形ABE全等于三角形ACD2,三角形BCD全等于三角形CBE3,三角形BFD全等于三角形CFE选第一组证明:因为一,AB=AC(已知)二,角A为公共角三,D,E分别为AB,AC的中点,所以AD

如图,在三角形ABC中,点D,E分别是AB,AC边上的点

∠B的同位角是∠ADE,同旁内角是∠ACB,∠B+∠BDE的度数是180度再问:同位角和同旁内角都只有一对吗还有后面一题的过程谢谢!!表示超急再答:恩,同旁内角因为是关于相连的3条线的,有两对,∠AD

如图,在三角形ABC中,D,E分别是AB,AC上的点

然后呢再问:且AD=31,DB=29,AE=了30,EC=32,找出角1角2角3角4中相等的角再答:等一下我算一哈再问:嗯,谢谢再答:角1234分别在哪里啊,再答:你截图给我看看初一的题目吧,再问:在