如图,一艘轮船以20 n mileh的速度由西向东航行

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:51:50
如图,一艘轮船以20 n mileh的速度由西向东航行
1.如图,一艘轮船以15海里/时的速度由南向北航行,在A处测得小岛P在西偏北75°方向上,两小时后,轮船在B处

角PAB=15度角PB直线北=30度可以由条件(在西偏北75°方向上,两小时后,轮船在B处测得小岛P在西偏北60°方向上,)得知,故角APB=30-15=15度故三角形PAB是PB=AB的等腰三角形可

如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处

由题意得∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴BC=BA=40海里,∵∠CDB=90°,∴sin∠CBD=CDBC.∴sin60°=CDBC=32.∴CD=BC×32=40×32=

一艘轮船以每小时40千米

轮船以每一艘小时40米千的速度从甲港开往乙港,行了全程的20%后,又行了1小时,这时未行路程与已行路程的比是3:1.设甲乙两港相距x千米20%x+40=1x/(3+1)20%x+40=25%x5%x=

已知:如图,一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距

设轮船离开到达安全距离的时间为x则20根10/40=x=根10/2hB到达A的时间为x0x0=100/40=5/2h因为根10/2

如图,一艘轮船在海上以每小时36海里的速度向正西方向航行,上午8时,在B处测得小岛A在北偏东30°方向,之后轮船继续向正

作AE⊥BD于点E,则∠ACB=90°-60°=30°,∠ABE=90°-30°=60°,∵∠ABE=∠ACB+∠CAB∴∠CAB=30°∴∠ACB=∠CAB∴AB=BC=36海里,在直角△ABE中,

如图,一艘轮船以15海里/时的速度由南向北航行,上午8时到达A处,此时测得小岛P在轮船北偏西15°的方向上...

AB=AD-BD=PD/tan15-PD/tan30=PD(1/tan15-1/tan30)=2*15=30PD=30/(1/tan15-1/tan30)=15海里再问:PD/tan是什么意思啊再答:

已知,如图,一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距

这道题可以用坐标系的方法解决.将“东南西北”方向设为坐标轴,所以北的方向就是y轴的正方向,东的方向就是x轴的正方向.然后把原点设为A点.下面设轮船所在的动点是B点(x,0),因为按照题意,轮船只在x轴

一艘轮船向正西方航行,在A处时测得海岛C在南偏西45°的方向上,前进10nmile到达B处,

设该船距岛最近距离为CH=ynmile,BH=xnmiley*tan45°=x+10y/x=tan60°=√3=>x+10=√3x=>x=5(√3+1)=>y=√3x=5√3(√3+1)=15+5√3

如图,一艘轮船以20海里的速度由西向东航行途中这类的题怎么理解

1、设时间为t,台风中心为o,t小时后轮船到达位置为c,则:AC=20t,AO=100-40t,CO=20倍根号10.因为是直角三角形,所以有等式:(20t)^2+(100-40t)^2=(20倍根号

如图,一艘轮船以15海里/时的速度由南向北航行,上午8时,在A处测得小岛P在西偏北75°的方向上,10时到达B处,轮船在

依题意得:AB=15×(10-8)=30(海里).∵∠PAB=∠CAD-∠PAD=90°-75°=15°,∠PBC=30°,∴∠P=∠PBC-∠PAB=15°,∴∠P=∠PAB,∴PB=AB=30(海

已知,如图,一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度

轮船以原速继续东行时,不会遇到台风.因为A'B'=√[(20t)^2+(100+40t)^2]>100+40t.

如图,一艘轮船以20n mile/h的速度由西向东航行,途中接到台风警报,台风中心正以40n mile/h的速度由南向

设船位于A点时,t=0.则t时刻,船和台风之间的距离为s=根号((20t)^2+(100-40t)^2)=20根号(5)*根号((t-2)^2+1)t=2时,s的最小值为20根号(5)你的题目没给清楚

如图,一艘货船在B处向正东方向航行,船速为25nmile,此时,一艘快艇在B的正南方向120nmile的A处,以65nm

设共需Xnmile如图需要构成直角三角形可得(25X)的平方+120的平方=(65X)的平方X=正负2因为时间为正所以X=2最快需要2

如图,一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中

(1)会遇到台风,时间是一小时刚好遇到.设时间为t,刚好遇到时台风到A的距离,与此时船到A点距离和台风到船的距离形成一个直角三角形.所以(100-40t)的平方(20t)的平方=4000.算出来t=1

,如图,已知一艘轮船以20海里/时的速度由西向

相遇问题,加了个20海里半径的范围;台风加上20海里速度每小时就是前进台风影响速度.用勾股定理轮船以20海里/时的速度由西向东航行,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100

如图,已知一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以

这道题可以用坐标系的方法解决.将“东南西北”方向设为坐标轴,所以北的方向就是y轴的正方向,东的方向就是x轴的正方向.然后把原点设为A点.下面设轮船所在的动点是B点(x,0),因为按照题意,轮船只在x轴

求清晰思路,打击抄袭已知,如图,一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的

这题,你缺少一个重要数据,就是距台风中心以多少海里的圆形区域内(包括边界)都属于台风区再问:我补充了,但没补充上,是20√10再答:第一题:会你设时间会t,x轴上就是20t,y轴上就是(100-40t