如图,一直AP,CP分别平分∠BAC,∠DCA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:07:27
1.作PF⊥AB,PG⊥CD则PF=PE=PG=8cm(角平分线上的点到角两边的距离相等)2.∵DF=DA,EF=EC∴∠A=∠AFD,∠C=∠EFC∵∠A+∠C=90°∴∠AFD+∠EFC=90°∴
作PM⊥AB于点D,PF⊥CD于点F∵AP平分∠BAC,PE⊥AC∴PM=PE(角平分线上的点,到角两边的距离相等)∵PE=8cm∴PM=8cm同理PF=8cm∴P到AB,CD的距离都是8cm
8再问:过程?再答: 再问:过程中的原因!再问:过程中的原因!再答:我的妈啊!你确定你不是幼儿园的
做垂线即PF垂直于ABPG垂直于CD因为AP平分角BACPE垂直于AC所以P到AB的距离(即PF)=PE=8cm(平分线上的点到两道直线的距离相等)同理PG=PE=8cm
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
证明:过P作PE⊥AB,PF⊥BC,PG⊥CD,PH⊥AD,因为AP、BP、CP分别平分∠DAB、∠ABC、∠BCD,所以PH=PE,PE=PF,PF=PH,所以PH=PE=PF=PG=PH所以四边形
∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2
过P分别作BM、BN、AC的垂线段PE、PF、PG.∵AP是角MAC的角平分线所以PE=PG同理PF=PG所以PE=PF所以BP平分角MBN
延长CP交AB于G在△APC与△APG中∠APC=∠APG=Rt∠,AP=AP,∠PAC=∠PAG∴△APC≌△APG(ASA)∴PC=PG,AC=AG在△CBG中,PC=PG,CM=MB,PM=5∴
设∠ABP=∠CBP=∠1,∠ACP=∠BCP=∠2,由△ABC:∠A=180°-2∠1-2∠2(1)由△PBC:∠BPC=∠P=180-∠1-∠2(2)(2)×2-(1)得:2∠P-∠A=180°∴
∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2
∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC/2
/>∵∠ACD=∠A+∠ABC,CP平分∠ACD∴∠PCD=∠ACD/2=(∠A+∠ABC)/2∵BP平分∠ABC∴∠PBC=∠ABC/2∴∠PCD=∠P+∠PBC=∠P+∠ABC/2∴∠P+∠ABC
过P作PD⊥AB交AB的延长线于D,作PE⊥BC交BC于E,作PF⊥AC交AC的延长线于F.∵P在∠CBD的平分线上,∴PD=PE.∵P在∠BCF的平分线上,∴PF=PE.由PD=PE、PF=PE,得
证明:过点P作PM⊥AB于M,PN⊥AC于N,PG⊥BC于G∵PM⊥AB,PG⊥BC,BP平分∠CBD∴PM=PG∵PN⊥AC,PG⊥BC,CP平分∠BCE∴PN=PG∴PM=PN∴AP平分∠BAC
过P点作AB、AC、BC的垂足于E、F、G点,则PE⊥AE,PF⊥AF,PG⊥BC,∴∠PEA=∠PGB=∠PGC=∠PFA=90°∵BP、CP分别为∠CBE和∠BCF的角平分线,∴PE=PG=PF∵
∵ABCD是平行四边形∴∠DAB+∠ABC=180°∵AP,BP分别平分∠DAB,∠ABC∴∠PAB=∠DAB/2∠PBA=∠ABC/2∴∠PAB+∠PBA=90°∵PAB构成三角形∴∠APB=90°
过P点分别作AE\AD\BC\的垂线段,垂足分别为XYZ因为BP平公角CBD,所以PY=PZ,(角平分线的性质)同理可得PX=PZ得PX=PY=PZ,则AP平分∠BAC,(角平分线的性质逆定理)
证明:需要做辅助线,三条垂线,第一,过P向AC作垂线垂足为D,过P向AB坐垂线垂足为E,过P向BC做垂线垂足为F.之后根据外角平分线,角ECP和角BCP相等,加上直角和公共边,便可说明三角形ECP和F
过P依次向AB、BC、CD、AD作垂线,垂足依次为E、F、G、H.∵AP平分∠BAD、PH⊥AH、PE⊥AE,∴PH=PE,又AP=AP,∴Rt△PAH≌Rt△PAE,∴AH=AE.······①∵P