如图,○O1与相交于点A和点B,AC∥O1O2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:03:49
如图,○O1与相交于点A和点B,AC∥O1O2
初三数学题如图,已知圆O1与圆O2相交于点A,B,过点B作CD垂直于AB,分别交圆O1和圆O2于C,D两点,过点B任作一

1.因为AB垂直CD所以角ABC=角ABD=直角,直角所对弦为直径.2.连接CE与DF,角EBC与角DBF为对顶角所以相等,由同一圆弧所对圆周角相等可知,角EBC=角EAC,角FBD=角FAD所以角C

如图,已知:⊙O1与⊙O2相交于点A、B,过点B作CD⊥AB,分别交⊙O1和⊙O2于点C、D,过点B任作一条直线分别E、

①因为,在⊙O1内AC所对的圆周角∠ABC=90°,在⊙O2内AD所对的圆周角∠ABD=90°,所以,AC、AD分别是⊙O1和⊙O2的直径.②在⊙O1中,同弧AB所对的圆周角∠AEB和∠ACB相等,即

如图,已知○O1和○O2相交于A,B两点,圆心O1在圆O2上,连心线O1O2与○O1交于点C、D,与○O

1)因为O1E是圆O2的直径所以∠O1AE=90因为A在圆上所以AE是圆O1的切线2)在直角三角形AEO1中,O1A=1,O1E=2R=3由勾股定理,得AE=2√2由△AO1E面积不变,得,(1/2)

初三的题目高手进!已知如图,圆o1与圆o2相交于点A,B两点,过点B作CD垂直于AB,分别交圆O1和圆O2于C,D,过点

证明:∵AB⊥CD∴AC和AD都是直径∵∠E=∠C,∠D=∠F∴△AEF∽△ACD∴AE/AF=AC/AD因为AC,AD为两个圆的直径,是定值∴AE/AF是一个常数

已知如图,圆o1与圆o2相交于点A,B两点,过点B作CD垂直于AB,分别交圆O1和圆O2于C,D,过点B任作一直线分别交

证明:(1)连接AC,AD∵B在⊙O1上且AB⊥BC∴∠ABC=90°∴AC是⊙O1的直径同理可得AD是⊙O2的直径(2)∠1=∠2∠1=∠3∠2=∠4∴∠3=∠4∴∠3+∠5=∠4+∠5∴∠CAD=

已知圆O1与圆O2,相交于点A、B,过点B作CD垂直AB,分别交圆O1和圆O2于点C、D(1)如图1 求证AC为圆O1的

证明:(1)∵CD⊥AB∴∠ABC=90º∴AC是圆O1的直径【直径所对的圆周角为直角】(2)∵CD⊥AB∴∠ABD=90º∴AD为圆O2的直径∵AC=AD∴①O1C=O2B【=&

如图,已知圆O1与圆O2相交于点A、B,O1在O2上,AC是圆O1的直径,直线CB

证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=

如图,○O1与○O2交于点A,B,连接AB,○O1○O2,它们相交于C点,已知○O1的半径为17,○O2的半径为10,O

连接O1A和O2A∵AB⊥O1O2,AC=BC=1/2AB∴O1A²=AC²+O1C²O2A²=AC²+O2C²∴O1A²-O2A

如图,已知圆O1与圆O2相交于A,B两点,过点A作圆O1的切线,交圆O2于点C,过点B作两圆的割线分别交圆O1,O2于,

第一个问题:∵PA切⊙O1于A,∴∠BAC=∠ADE.∵A、B、C、E共圆,∴∠BAC=∠CED.由∠BAC=∠ADE、∠BAC=∠CED,得:∠ADE=∠CED,∴AD∥EC,∴PA/PC=PD/P

已知 如图,圆O1与圆O2相交于A、B,B是弧ABC的中点,CA、CB的延长线与圆O1分别相交于点D、E,过点B作AC的

1、证明:连接AB、DB∵B是弧ABC的中点∴弧AB=弧BC∴∠BAC=∠BCA∵∠BAC是圆O1内接四边形ABED中∠BED的外角∴∠BAC=∠BED∴∠BED=∠BCA∴CD=DE∵∠BED、∠B

如图,已知⊙O1与⊙O2相交于A、B,点O1在⊙O2上,AC是⊙O1的直径,直线CB与⊙O2相交于点D,连AD.

证明:(1)连接AB,∵AC是⊙O1的直径,∴∠ABC=90°,∴∠ABD=90°,∴AD是⊙O2的直径;(2)连接O1D,∵AD是⊙O2的直径,∴∠AO1D=90°,即O1D⊥AC,∵O1A=O1C

如图,已知圆O1与圆O2相交于点A,B,点O1在圆O2上,AC是圆O1的直径,CB的延长线与圆O2相交于点D,连接AD.

证明:(1)连接AB,连接DO1,∵AC是⊙O1的直径,∴∠ABC=∠ABD=90°,在⊙O2中,∵∠ABD=90°,∴AD是⊙O2的直径.﹙2﹚∵AD是⊙O2的直径,∴∠AO1D=90°,∵AO1=

如图,已知⊙O1和⊙O2相交于点A、B,分别过A、B作直线交⊙O1与点C、E,交⊙O2与点D、F.求证:CE∥FD

连接AB∵四边形ABEC内接于⊙O1∴∠C=∠ABF(圆内接四边形的一个外角等于与它相邻的内角的对角)在⊙O2中,∠ABF=∠D(等弧所对的圆周角相等)∴∠C=∠D∴CE∥DF

已知:如图,⊙O1与⊙O2相交于点A和点B,且点O1在⊙O2上,过点A的直线CD分别与⊙O1、⊙O2交于点C、D,过点B

证明:(1)∵四边形ABEC是⊙O1的内接四边形,∴∠ABE+∠C=180°.又四边形ABFD是⊙O2的内接四边形,∴∠ABE=∠ADF.∴∠C+∠ADF=180°.∴CE∥DF;(2)连接O1B,则

如图,圆O1与圆O2相交于E.F俩点,过E.F做直线交圆O1,圆O2于A.D和B.C俩点,连接AB,CD.求证AB平行C

连接EF∵A、B、F、E四点共圆∴∠A+∠BFE=180°同样∵E、F、C、D四点共圆∴∠EFC+∠D=180°又∵∠BFE+∠EFC=180°∴∠A+∠D=180°∴AB∥CD 

如图,圆O1与圆O2相交于点A,B,分别连结AB,O1O2,求证AB⊥O1O2

连结O1A、O1B、O2A、O2B,∵O1A=O1B(半径相等),∴O1在AB的中垂线上(到线段两端距离相等的点在线段的中垂线上)同理,∵O2A=O2B,∴O2在AB的中垂线上,∴O1O2是线段AB的

如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O2的切线交⊙O1于点C,过点B作两圆的割线分别交⊙O1,⊙O2

(1)连接AB则∠E=∠PAB(等弧对等角)由于PA是圆O2的切线,所以∠PAB=∠F所以∠E=∠F所以AF//EC(内错角相等,两直线平行)于是:PA/PC=PF/PE即PA*PE=PC*PF(2)