如图,○0是△ABC的外接圆,弧AB=弧AC,点D在边BC上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:10:46
如图,○0是△ABC的外接圆,弧AB=弧AC,点D在边BC上
如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点E.

E是BC弧中点,连结CE,BE=IE=CE,《BCE=〈BAE(同弧圆周角相等),〈BAE=〈EAC,〈EAC=〈DCE,〈DEC=〈AEC(公用),△CDE∽△ACE,CE/AE=DE/CE,CE^

已知,如图,AD是△ABC的外角∠AEC的平分线,AD与△ABC的外接圆相交于点D

只需要证它是等腰三角形就行.角ABD等于角ACD(同狐对同角),所以知角DBC加角DCB等于角ABC加角ACB等于角CAE,而角DAC等于角DBC(同理),角DAC等于角EAD,所以,角DCB等于角E

如图,⊙O是△ABC的外接圆,已知∠B=60,求∠ACO的度数.

连接co,同弧所对的圆周角是圆心角的一半,角aoc就等于120°半径oa=oc所以角aco=30°

已知,如图.AD是△ABC的外角∠EAC的平分线,AD与△ABC的外接圆相较于点D,求证:DB=DC

∠DCB=∠EAD(圆内接四边形的一个外角等于它的内接角)∠DAC=∠EAD(角平分线定义)∠DAC=∠DBC(同弧所对的圆周角相等)∴∠DCB=∠DBC∴DB=DC

如图,点I是△ABC的内心,延长AI交△ABC的外接圆于点D.求证:点D是△BCI的外心

即需要证明DB=DI=DC即可∠DBI=∠DBC+∠CBI=∠DAC+1/2*∠ABC=1/2*∠BAC+1/2∠ABC∠BID=∠BAD+∠ABI=1/2*∠BAC+1/2*∠ABC所以∠DBI=∠

如图I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E,

①BE=IE   证明:连接BI.∵I为△ABC内心,∴∠1=∠2,∠3=∠5,∵∠3=∠4,∴∠4=∠5,∵∠BIE=∠2+∠5,∠EBI=∠1+∠4,∴∠BIE=∠E

如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是

是1:2设圆的半径为R,则外正三角形的高为3R,内三角形的高为3/2R(3/2):3=1:2再问:我算起来也是1:2,为什么答案上是1:4啊再答:1:2是相似线段的比例,1:4是面积的比例再问:肯定是

如图,⊙O是△ABC的外接圆,AB=AC,求证:AB²=AE·AD

证明:∵AB=AC∴∠B=∠ACB连接CD,则ABCD四点共圆∴∠ADC+∠B=180º∵∠ACE+∠ACB=180º∴∠ADC=∠ACE又∵∠DAC=∠CAE∴⊿ADC∽⊿ACE

如图,在△ABC中,AC=BC,E是内心,AE的延长线交△ABC的外接圆于D.

证明:(1)∵AC=BC∴∠CAB=∠CBA,又∵E是内心,∴∠1=∠2=∠3=∠4.∴BE=AE;(2)∵∠BED=∠1+∠3,∠EDB=∠2+∠5,又∵∠5=∠4,∴∠BED=∠EDB,∴BD=D

如图,AE是△ABC外接圆O的直径,AD是△ABC的边BC上的高,EF⊥BC,F为垂足.

(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM-DM=BM-MF,即BF=CD.(2)连接BE,则∠AB

如图,已知ABC的三条高AD、BE、CF交于点H.求证BHC的外接圆与ABC的外接圆是等圆

连BG,CG在直角三角形BHD和直角三角形AHE中,∠AHE=∠BHD(对顶角相等),∠HBD=90度-∠BHD,∠HAE=90度-∠AHE,∠CAH=∠HBD,∠CAG=∠CBG(同弧圆周角相等),

如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点E.

(1)证明:连接IB.∵点I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠IBD.又∵∠BIE=∠BAD+∠ABI=∠CAD+∠IBD=∠IBD+∠DBE=∠IBE,∴BE=IE.(2)在△BE

如图,圆○是△ABC的外接圆,且AB=AC,求证AB²=AE×AD

没有图不知道E点和D点是做不出来的.

如图,⊙O是△ABC的外接圆,AD是△ABC的高,AE是⊙O的直径,求证:∠BAE=∠CAD.

证明:连接BE,∵AE是⊙O的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.∵AD是△ABC边上的高,∴∠ADC=90°.∴∠CAD+∠ACB=90°.∵∠E=∠ACB,∴∠BAE=∠CAD.

如图,已知I是△ABC的内心,AI,BI,CI的延长线分别交△ABC的外接圆于点DEF,求证EF⊥AD

连结AEAF.角CAE=CBE角FEA=FCA所以角DCA+CAE+FEA=DCA+CBE+FCA=1/2(BAC+CBA+BCA)=90°于是:DAE+FEA=90°终于垂直.完工

如图,AM是△ABC外接圆的直径,△ABC的高AD的延长线交圆于点N,求证:BN=CM

证明:因为AM是直径所以∠ACM=90度所以∠CAM+∠M=90度因为AD是高所以∠ABD+∠BAN=90度因为∠ABD=∠M所以∠CAM=∠BAN所以BN=CM江苏吴云超解答 供参考!

已知,如图,圆形O是等边三角形ABC的外接圆,且其内切圆的半径为2厘米,求△ABC的边长及扇形AOB的面积

等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=

如图已知△ABc的外接圆0且AB=Bc=cAM是弧Bc上任意一点连接MAMBmc求证MA=MB十Mc

证明:在MA上取N点,使MN=MB,连BN则易证三角形MBN为正三角形(∠BMN=∠C=60)进一步可证三角形BAN和BCM全等,NA=MC所以MA=MN+NA=MB+MC希望我的回答能帮助到您,

如图已知三角形ABC中,CD是高,1.请用圆规与直尺作出△ABC的外接圆

1,以CD为半径,A、B、C为圆心画圆,⊙A、⊙C交于M、N,⊙B、⊙C交于P、Q连接MN、PQ,MN交PQ于O,以O为圆心,OC为半径画圆,⊙O即为△ABC的外接圆2,作OE⊥AC于E,延长OE交⊙

如图,AM是△ABC外接圆的直径,△ABC的高AD的延长线交圆于点N,求证BN=CM

连接BM由题∠CAM=∠CBM∵AM是直径,∴∠ABM=90°∵∠ADB=90°,∴∠BAN=∠CBM=∠CAM∴BN=CM