如图,△ABC是○o的内接三角形,AB是○o的直径,OD⊥AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:23:01
如图,△ABC是○o的内接三角形,AB是○o的直径,OD⊥AB
如图,△ABC内接于⊙O,AB是⊙O的不是直径的弦,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由.

连结AO并延长,交圆于A,E,连结AC,EC,则∠ACE=90°,∴∠EAC+∠AEC=90°,∵∠CAD=∠ABC,∴∠CAD+∠EAC=90°,∴直线AD与⊙O相切.

如图,△ABC是圆O的内接三角形,I是△ABC的内心,连接AI并延长交BC于点E,交圆O于点D.有能力的试试~

②∵∠BAD=∠EBD,∠D=∠D∴△BAD∽△EBD∴AD/BD=BD/ED∴x/2=2/y∴y=4/x∵BD≤AD≤2R∴2≤x≤6即y=4/x(2≤x≤6)③∵AE=3,即x-y=3联立y=4/

如图,△ABC内接于⊙O,AD是△ABC的高,AD的延长线交⊙O于点G,AE是⊙O的直径。(1)若AB=6,AC=5,A

解题思路:根据题意,由圆的性质和三角形全等的知识整理,分析可以求得解题过程:

已知:如图,△ABC内接于圆O,弦AD与BC垂直,AE是圆O的直径.求证:∠BAE=∠CAD

证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免

已知,如图,△ABC内接于⊙O,弦AD与弦BC垂直,AE是⊙O的直径.

因为AE是⊙O的直径,所以∠ABE=90°,∠BAE=90°-∠BEA因为弦AD与弦BC垂直,所以∠CAD=90°-∠ACB因为∠BEA=∠ACB所以∠BAE=∠CAD

如图 △abc是圆o的内接三角形sin∠B=4/5,AC=8,求圆O的半径.

显然∠AOC=2∠Bsin∠B=sin∠AOC/2=4/5则cos∠AOC=cos2∠B=1-2sin²∠B=-7/25画图有OA向量-OC向量=CA向量则(OA向量-OC向量)²

如图,△ABC是圆o的内接三角形AE是圆O的直径 AF是圆O的弦 AF垂直于BC垂足为D BE与CF相等吗?为什么?

证明:∵AE是⊙O的直径∴∠ABE=90°∴∠BAE+∠AEB=90°∵AF⊥BC∴∠ADC=90°∴∠CAF+∠ACB=90°∵∠AEB=∠ACB(同弧所对的圆周角相等)∴∠BAE=∠CAF∴BE=

如图,△ABC内接于圆O,AE是圆O的直径,AD⊥BC于点D.∠BAE与∠CAD相等吗

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交于AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,P

∵PA是圆O的切线,PDB是圆O的割线,∴PA2=PD•PB,又PD=1,BD=8,∴PA=3,(3分)又PE=PA,∴PE=3.∵PA是圆O的切线,∴∠PAE=∠ABC=60o,又PE=PA,∴△P

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,PD

∵PB=PD+BD=1+8=9,由切割线定理得:PA2=PD•BD=9,∴PA=3,由弦切角定理得:∠PAC=∠ABC=60°,又由PA=PE∴△PAE为等边三角形,则AE=PA=3,连接AD,在△A

如图,△ABC是⊙O的内接三角形,AD是直径,E是OD的中点,那么tanB*tanC的值是确定的吗?

是固定的tanB*tanC的值是3证明:作EF⊥AB于点F,连接BD∵AD是直径∴∠ABD=90°∴EF∥BD∴∠C=∠D=∠AEF∴tan∠C=tan∠AEF=AF/EF∵tan∠ABC=EF/BF

如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,若∠ABC=50°,求∠CAD的度数.

连接CD;则∠ADC=∠ABC=50°∵AD是⊙O的直径,∴∠ACD=90°∴∠CAD+∠ADC=90°∴∠CAD=90°-∠ADC=90°-50°=40°.

如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中弧AB上一点,延长DA至点E

∵CD=CE,∴∠CDA=∠CEA∵弧AC=弧BC,∴∠CDA=∠CDB,∴∠CEA=∠CDB∵ADBC四点共圆,∴∠CAE=∠CBD∵AC=BC,∴△ACE=△BCD,∴AE=BD,∠ACE=∠BC

​如图,已知△ABC是⊙O的内接三角形,AB=AC,D是圆上任意

射线是角平分线再问:图1,为什么是连接DA再答:因为弧AB和弧AC相等,所以所应角相等

已知:如图,△ABC是○O的内接三角形,角ACB的平分线交圆O于点D,过点D作圆O的切线L.求证AB平行于l.

证明:连接AD,BD因为DC平分∠ACB所以∠ACD=∠BCD所以弧AD=弧BD所以点D是弧ADB的中点连接OD,根据垂径定理OD⊥AB因为L是切线所以OD⊥L所以AB‖L(同垂直于一条直线的2条直线

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,△ABC内接于圆O,AD是△ABC的边BC上的高,AE是圆O的直径,连接BE,求证:∠BAE=∠CAD

所求的两个角分别问△BAE和△CAD的内角∵AE是圆的直径,B点在圆上∴∠ABE=90°(直径所对的圆弧角等于90°)又AD⊥BC,得∠ADC=90°即∠ABE=∠ADC∴要证∠BAE=∠CAD只需证

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O

1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈

如图△ABC内接于圆O,AB是圆O的直径,角CBD=角ABC判断直线AD与圆O的位置关系

应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切

如图,△ABC内接于○o,ae是圆o的直径,ad是△ABC中BC边上的高,求证:AC·BC=AE·AD

证明:∵∠AEC与∠ABC都是弧AC所对应的圆周角∴∠AEC=∠ABC=∠ABD而AE为直径,∴∠ACE=∠ADB=90°∴△ABD与△AEC相似∴AB/AE=AD/Ac∴AC·BC=AE·AD