如图,△ABC内接于圆O,链接OA,OC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:14:12
如图,△ABC内接于圆O,链接OA,OC
如图,△ABC是圆O的内接三角形,I是△ABC的内心,连接AI并延长交BC于点E,交圆O于点D.有能力的试试~

②∵∠BAD=∠EBD,∠D=∠D∴△BAD∽△EBD∴AD/BD=BD/ED∴x/2=2/y∴y=4/x∵BD≤AD≤2R∴2≤x≤6即y=4/x(2≤x≤6)③∵AE=3,即x-y=3联立y=4/

已知:如图,△ABC内接于圆O,弦AD与BC垂直,AE是圆O的直径.求证:∠BAE=∠CAD

证明:∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD注:明白了就可以了,别加分,免

如图,已知△ABC内接于圆O,∠CBD=∠A,判断BD于圆O的位置关系,并说明理由

BD切圆O于B证明:连接BO并延长BO交圆O于E,连接AE∵直径BE∴∠BAE=90∴∠BAC+∠CAE=90∵∠CBE、∠CAE所对应圆弧都为劣弧CE∴∠CBE=∠CAE∵∠CBD=∠BAC∴∠EB

如图,三角形ABC内接于圆O,AE是圆O的直径,AD垂直BC于点D,角BAE于角CAD相等吗?

相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,△ABC内接于圆O,AE是圆O的直径,AD⊥BC于点D.∠BAE与∠CAD相等吗

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠C+∠CAD=90∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD

如图 AE是圆O的直径,△ABC内接于圆,AD⊥BC于D试说明∠1=∠2

∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD即角1=角2

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

如图,△ABC内接于⊙O,高AD,BE相交于点H,延长AD交△ABC的外接圆于点G,

(1)连接BG,根据同一弧所对应的圆周角相等,可推出∠BGA=∠ACB再看△AHE和△ACD,共用∠DAC,而且∠BEC和∠ADC都是直角则△AHE∽△ACD,推出∠AHE=∠ACB,根据之前∠BGA

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

一 ,如图 已知△ABC,O为三角形内一点,链接OB,OC(1) 求证 OB+OC<AB+AC(2)链接OA 求证OA+

构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.1.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD+

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,已知△ABC内接于圆O,AD平分∠BAC交圆O于点D,过D作圆O的切线与AC的延长线交于点E.(1)求证:BC平行

证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O

1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈

如图,已知△ABC内接于圆O,∠CBD=∠A,判断BD与圆O的位置关系

答:BD与⊙O的关系是相切理由:作直径BE,连接CE因为BE是直径,所以∠BCE=90度所以∠EBC+∠E=90度因为∠A=∠E,∠A=∠CBD所以∠EBC+∠CBD=90度所以BE⊥BD根据“过直径

如图,三角形ABC内接于圆O,AD平分角BAC交圆O于D,DE垂直AB于E

(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A

如图,已知△ABC内接于圆o,I为△ABC的内心,连接AI并延长分别交BC和圆o于E、D两点,连接BD、CD,求证:

证明:(1)∵内心即角平分线的交点∴∠BAD=∠CAD,∴BD=CD【相等圆周角所对的弦相等】∠ABI=∠EBI∵∠BID=∠BAD+∠ABI∠DBI=∠DBC+∠EBI∠DBC=∠CAD=∠BAD【

如图△ABC内接于圆O,AB是圆O的直径,角CBD=角ABC判断直线AD与圆O的位置关系

应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切