如图,△ABC为等边直角三角形,点E在BA的延长线上,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:16:42
(1)四边形AEMF是平时四边形证明:∵∠MCB=∠ACF=60°∴∠ACB=∠MCF∵BC=CM,CA=CF∴△ABC≌△FMC∴MF=AB=AE同理可得△ABC≌△EBM∴AE=AC=AF∴四边形
应是“求证:BE是AD的一半"延长BE交AC的延长线于点F,则有AE垂直平分BF,得BE=EF,BF=2BE角CAD=角DBE=22.5度,AC=BC,角ACB=角BCF=90度所以三角形ACD全等于
C点的坐标有2个,第二象限和第三象限.由(-4+2)÷2=-1,|AB|=6,∴高为√(6²-3¹)=3√3.∴C1(-1,3√3),C2(-1,-3√3),S△ABC=1/2·6
证明:∵△ABC和△CDE均为等边三角形∴AC=BC,CD=CE又∠BCD+∠ACD=∠ACE+∠ACD=60°∴∠BCD=∠ACE∴△BCD≌△ACE∴∠CAE=∠B=∠ACB=60°∴AE∥BC再
可以证明三角形BCD和三角形ACE全等(SAS)然后得到角EAC=角ABC=60度就能证明平行了(内错角定理)
解;(1)∵PA+PB>ABPB+PC>BCPC+PA>AC,∴(PA+PB+PB+PC+PC+PA)>AB+BC+AC,∵AB=BC=AC,∴2(PA+PB+PC)>3AB∴PA+PB+PC>32A
∵等腰直角三角形ABC中,AB=2,∴AC=22AB=1,∵等边△ABD和等边△DCE,∴AD=BD,CD=ED,∠ADB=∠CDE,∴∠ADC=∠BDE,在△ADC和△BDE中,AD=BD∠ADC=
(1)60(2)∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=
角CAD=90°+60°=150°,AC=AD,故角ADC=15°,角MDE=60°-15°=45°,由此得出三角形DEM相似于三角形ABC,而AB=BD=2DE,所以BC=2DM.
在△EGF和△DAF中,∵GE=EB×sin60°=AB×sin60°AD=CA=AB×sin60°∴GE=AD又∵∠GFE=∠AFD(对顶角),∠DAF=∠BAC+∠CAD=30°+60°=90°=
(1)EG=AC算长度能算出来(2)EF=FD△fad与△fge是全等的
证明:∠ACB=∠DCE=60°,则∠ACD=∠BCE=120°;又AC=BC;DC=EC.则⊿ACD≌ΔBCE(SAS),得:AD=BE;∠CAD=∠CBE.点M,N分别为AD,BE的中点,则AM=
(1)在△ABE和△DBC中,有DB=AB,BE=BC(等边三角形),∠ABE=∠DBC=120°∴△ABE≌△DBC(SAS0∴AE=CD(2)因题意,∠MBN=60°(180°-60°-60°)又
把三角形APC顺时针旋转60度,AC与AB重合,得到一个三角形AP'B连结PP',AB与PP'相交于D,则
BC边上的高为根号3.面积为根号3/2.求赞再问:˵��һ����Ȼ�Ҳ�֪����ô���ѵ���д���������Ǵ���==再答:���AΪ120����ΪABC�ǵȱ�����Σ�����ֱ
在边AB上取一点G,使得BG=BD,连结DG,∵AB=BC,∴CD=AG∵∠ADE+∠EDF=∠B+∠BAD,∠B=∠ADE=60º∴∠BAD=∠EDF∵∠B=60º,BG=BD∴
解∵△ABD为正三角形△DCE为正三角形∴AD=BDCD=ED∵∠ADC+∠CDB=60°∠CDB+∠BDE=60°∴∠ADC=∠BDE在△ADC和△BDE中AD=BD∠ADC=∠BDECD=ED∴△
初中题.提示等边三角形中DE垂直AB,则e为中点,且df垂直Ab,ef平行bc利用相似定理,得到ef等于1/2Bc,结合前面ae等于1/2ab,一题可证
证明:过E作EG丄AB于G,如图,∵△ABE为等边三角形,∴BG=12AB,∠ABE=∠BEA=∠EAB=60°,AE=AB,∵Rt△ABC中,∠C=90°,∠A=30°,∴BC=12AB,∴AG=B
△ABC是等边直角,AB为直径,取中点(圆心o)连接OF,AB=2R因为△AEF是正三角形,所以∠EAF=∠AFB=60°连接BE,AB是直径,所以∠AEB=90°所以∠FEB=30°由相似得∠EAB