如图,△ABC中,角BAC=110°,DE,FG分别为AB,AC的垂直平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:53:57
如图,△ABC中,角BAC=110°,DE,FG分别为AB,AC的垂直平分线
急求解)如图,三角形ABC中,角BAC=60度,角ABC=45度

 设圆O的半径为r,连FO,并延长交圆O于点G,连EG,因为∠BAC=60°所以∠EGF=∠BAC=60因为GF是直径所以∠GEF=90°所以EF=√3r,当半径r取得最小值时,EF有最小值

如图在△abc中角bac=角adc,dc=4,bc=16求ac

三角形BAC与ADC为相似三角形,BC/AC=AC/DC,可得AC=8

如图△ABC中,D是角BAC的平分线,证明AB/AC=BD/DC

利用正弦定理证明BD/sin角BAD=AB/sin角ADBCD/sin角CAD=AC/sin角ADCsin角ADC=sin角ADB角BAD=角CAD所以AB/AC=BD/DC

如图,在三角形ABC中,角BAC=45度.

15.解析:设高为h,则AB=√(9+h^2),AC=√(4+h^2),由余弦定理得25=AB^2+AC^2-2AB*AC*cos45=9+h^2+4+h^2-2*√【2(9+h^2)*4+h^2)】

如图,△ABC和△DBC中,角BAC=角BDC=90°,O为BC中点

(1)因为∠BAC=∠BDC=90°,O为BC中点所以A,B,C,D四点共圆,且BC是直径,O是圆心所以OA=OD=r所以△AOD是等腰三角形(2)因为A,B,C,D四点共圆所以∠AOB=2∠ACB=

如图,根据图形填空: (1)AD是△ABC中∠BAC的角平分线,则∠______=∠______=12

(1)AD是△ABC中∠BAC的角平分线,则∠BAD=∠CAD=12∠BAC.(2)AE是△ABC中线,则BE=CE=12BC.(3)AF是△ABC的高,则∠AFB=∠AFC=90°.再问:画个图吧。

如图,已知三角形ABC中,角BAC=90度,角ABC=角ACB

在RT△BCF中∠CFB=90-∠FBC在RT△BED中∠BED=90-∠FBA所以∠CFB=∠BED因为∠FEC=∠BED(对顶角)所以∠CFB=∠FEC△CEF为等腰三角形所以CF=CE

已知,如图,在三角形ABC中,AP平分角BAC,且角BAC=42度,角ABC=32度.求证:AB=AC+PB

如图,在AB上取点D,使得AD=AC因为AP平分角BAC易得三角形APD全等于三角形APC所以角ADP=角C=180度-角B-角BAC=105度,所以角BDP=180度-角ADP=75度所以角DPB=

如图:三角形ABC中,OA平分角BAC,角1=角2,求证三角形ABC是等腰三角形!

OA平分角BAC,所以角BAO等于角CAO,因为角1等于角2,所以有180度-角BAO-角1=180度-角CAO-角2.即:角BOA=角COA,又因为公用边OA=OA,根据三角形相等规则:两角及其夹边

如图,已知三角形ABC中,角BAC=2角B,AB=2AC,AE平分角BAC

作角a的平分线AD,交BC于D,再取AB的中点E,连接DEAC=0.5AB=AE角EAD=角CAD,所以△EAD全等△CAD所以角c=角AED,角EAD=角CAD=0.5角BAC=角B,所以三角ABD

如图,在△ABC中,AB=AC,AD平分∠BAC.

证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.

如图,三角形ABC中,角ABC=角BAC,角BAC的角平分线交BC的延长线于点D,若角ADC=2/1角CAD,求角ABC

角BAC的角分线与BC的交点在BC线上.不在延长线上啊.题错误

一道数学题,几何.如图,在△ABC中,BAC=30度,

这个题好做.如答图所示:连接A‘B,过点B作AC的垂线交AC的延长线于点D∵∠BAC=30°∴BD=1/2x4=2在Rt△ABD中,AD=√4²-2²=2√3∴B(-3,-2√3)

如图1,在三角形ABC中,角BAC=90度,AB=AC,直线m经过点A,

(1)证明:因为AB=AC,且∠BDA=∠BAC=∠AEC,又∠DBA+∠DAB+∠BDA=180,∠EAC+∠ECA+∠AEC=180∠DAB+∠EAC=180所以有∠DBA=∠EAC,∠DAB=∠

如图三角形ABC中BD=DC,AD平分角BAC,DE垂直于A

解题思路:角平分线性质和全等三角形的性质和判定等的应解题过程:见附件最终答案:略

如图,已知△ABC中,∠BAC=120°,P为△ABC内一点.

把△APC绕A逆时针旋转60°得到△AP′C′,如图∴∠CAC′=∠PAP′=60°,AC=AC′,AP=AP′,PC=P′C′,∴△APP′为等边三角形,∴PP′=AP,∵∠BAC=120°,∴∠B

如图,已知在△ABC中,BD=DC,∠1=∠2,求证;AD平分∠BAC

BD=BC=>∠DBC=∠DCB∠1=∠2=>∠ABC=∠ACB=>AB=AC∠DBC=∠DCB=>△ABD≌△ACDBD=CD=>∠BAD=∠CAD=>AD平分∠BAC

如图,在Rt三角形ABC中,角BAC=90度,AD垂直BC于

解题思路:(1)∵AD⊥BC∴∠DAC+∠C=90度∵∠BAC=90°∴∠BAF=∠C∵OE⊥OB∴∠BOA+∠COE=90°∵∠BOA+∠ABF=90°∴∠ABF=∠COE∴△ABF∽△COE。(2