如图,△ABC中,BE,CD为角平分线且交点为O
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:39:22
答:是定角.理由:因为三角形ACE和三角形ABD是等边三角形所以,角DAB=角CAE=叫DBA=60度DA=AB,AC=AE所以角DAB+角BAC=角CAE+角BAC即角DAC=角BAE所以三角形DA
过E作BC或AD的平行线EF交AB于F,由平行线等分线段定理可知,AF=BF,又三角形ABE是直角三角形,所以EF是它的斜边上的中线,由定理知EF等于斜边的一半,即BF=EF由此可知∠FBE=∠FEB
B..因为角A=50.CD垂直AB所以角ACD=40又因为三角形PEC中角ACD=40.角CEP=90.所以角EPC=50..角DPE=130..角DPE与角BPC为对顶角.所以BBBBBBBBBBB
证明:连接BD∵△ABC是等边三角形,D是AC中点∴∠ACB=60°,∠BDC=30°∵CD=CE∴∠E=∠CDE∵∠CDE+∠E=∠ACB=60°∴∠E=30°∴∠E=∠DBE∴DB=DE∵F是BE
∵等边三角形ABC∴AB=BC=AC∠ABC=∠BCA=60°∵CD=AE∴BD=CE在三角形ABD和三角形BCE中AB=BC∠ABD=∠BCEBD=CE∴△ABD≌△BCE∴∠BAD=∠CBE∵∠C
延长AN和AM分别交BC于PQAN⊥BE且BE为∠ABC的平分线=>BAP为等腰三角形=>N为AP中点同理M为AQ中点,根据中位线定理MN//BC
延长AMAN交BC的延长线于点PQ根据CDBE是角平分线及CD垂直APBE垂直AQ能得出△AMC≌△PMC△ANB≌△QNB那么MN分别是APAQ的中点MN为△APQ的中位线MN//PQ即MN//BC
图中的等腰三角形有△ABC、△PBC证明:∵BD=CE,BE=CD,BC=BC∴△BCE≌△CBD(SSS)∴∠EBC=∠DCB,∠DBC=∠ECB∴AB=AC,PB=PC∴等腰三角形△ABC、△PB
因为BC为直径,D,E在圆上,所以∠CEB=∠BDC=90°,又因为BE=CD,BC为斜边,所以△BDC与△CEB全等,所以∠DBC=∠ECB,所以△ABC为等腰三角形
BH=AC证明:∵CD⊥AB,BE⊥AC∴∠ADC=∠BDC=∠AEB=90∴∠ABE+∠A=90,∠ACD+∠A=90∴∠ABE=∠ACD∵∠ABC=45∴等腰RT△BCD∴BD=CD∴△ACD≌△
全等,因为BE=CD,BD=CE所以△DBC全等于△EBC因为BE,CD分别是∠ABC和∠BCA的平分线所以∠ABE等于∠ACD∠BAC为公共角,∠ADC又等于∠AEB,BE=CD所以.△ABE与△A
证明:(1)∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,∴DB=DC,∠ABE=∠DCA,∵在△DBH和△D
证明:∵AC⊥BC,BE⊥CD,∴∠ACF+∠FCB=∠FCB+∠CBE=90°.∴∠FCA=∠EBC.∵∠BEC=∠CFA=90°,AC=BC,∴△BEC≌△CFA.∴CE=AF.∴EF=CF-CE
证明:AC=BDBE=CEAE=DE所以三角形ABE=三角形CDE(边边边)角A=角B
连接DE,∵AC=BC,CD⊥AB,∴AD=BD,∠ACD=45°,∴CD=AD=AB,∵AE=EC,∴DE=AE=EC=AC,∴∠EDC=45°,DE⊥AC,∵∠A=45°,∴∠A=∠EDG,∵EF
∵CD为AB中线∴AD=DB∵DE=CD∴AD=DB,CD=DE∴四边形ACBE为平行四边形∵角ACB=90°∴四边形ACBE为矩形
思路是这样的因为ABC未等边三角形所以角ABC=角ACB=60°又因为D为AC中点BD垂直于AC所以角DBE=60°/2=30°角DCE=180°-60°=120°又因为CD=CE三角形BCE为等腰三
设AC=BC=AB=a,则CF=1/4*a,CD=1/2*a;由余弦定义得:DF^2=CD^2+CF^2-2*CD*CF*COS60º故DF^2+CF^2=CD^2即∠CFD=90°
∵BE⊥AC∴∠ABE+∠BAC=90∴∠ABE=90-∠BAC∵CD⊥AB∴∠ACD+∠BAC=90∴∠ACD=90-∠BAC∵∠ABC=∠ABE+∠CBE∴∠CBE=∠ABC-∠ABE=∠ABC-
你好:这题应该不需要勾股的知识吧?你可以先看下我的解题步骤:依题意:AD=BD,CD=DE且∠ADC=BDE∴△ADC≌△BDE∴∠ABE=∠CAB∵∠ACB=90°∴∠CAB+∠CBA=90°∴∠A