如图,∠c=90度,在点o在ac上,cd为圆o的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:14:49
直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点
O为AB中点,所以OA=OB=OC,所以ABC在O的圆上连OD,OD=OB=OC=OA,四点共圆再问:我要过程再答:再简单不过了,总不能把定理再证明一遍吧.在Rt△ABC中,∠C=90度O为AB中点作
对应圆心角之和为360°.所以其和为180°
(Ⅰ)证明:连接OD.∵OA=OD,∴∠A=∠ODA,∵∠A+∠CDB=90°,∴∠ADO+∠CDB=90°,∴∠ODB=90°,∴BD为圆的切线.--------------------------
纠正楼上:建立直角坐标系,由已知BC=6,CP=6,设C(0,0)B(0,6)A(8,0)直线AB方程3x+4y-24=0,点O在y=-x+6上,设O(x,6-x)O到AC距离为6-x,O到AB距离x
(1)△AOB≌△ADF(SAS)∴∠ADF=∠AOB=90°(2)过E作EG⊥FC交FC于G,同理可证△FGE≌△ADF,∴FG=AD=DC,FD=GE,∵FG=FD+DG,DC=DG+GC,∴FD
证明:(1)连接OD,(1分)∵∠BAC的平分线AD交BC于D,∴∠OAD=∠CAD;又∵∠OAD=∠ODA,∴∠ODA=∠CDA,∴OD∥AC.∵∠ACB=90°,∴OD⊥BC,(3分)∴BC是⊙O
o时Rt△ABC的内接圆圆心,设od为x过o点向两边做垂线,垂足为E、F.OE=OF=OD=x.AF=b-xAF=AD(全等).同理BD=BE=a-x.AB=AD+DB即c=a-x+b-x所以OD=(
图在哪里?还有,∠D你错写成∠E了.再问:额,题目D后面还有一个E,再答:你好,五角星的内角和就是180°,不需要这个圆也是180°。之所以给了这个圆,估计是想让你更好判断出来,因为五个圆周角相加正好
当α=90°时,四边形EDBC为菱形∵α=90°,∴ED‖BC,∵CE‖AB,∴四边形EDBC为平行四边形点O是AC的中点,∴点D是AB的中点,BD=1/2ABRt△ABC中,∠ACB=90°,∠B=
50或130这图上的是130
根据圆内接四边形对角到补得:∠ADC=180°-∠ABC=120°.再问:可是没有四边形再答:AB是圆o的直径,点C,D在圆o上。再问:已经知道怎么做了,同弧所对的圆周角相等,角adc=角abc=60
(1)直线BD与⊙O相切.证明:如图1,连接OD.∵OA=OD,∴∠A=∠ADO.∵∠C=90°,∴∠CBD+∠CDB=90°.又∵∠CBD=∠A,∴∠ADO+∠CDB=90°.∴∠ODB=90°.∴
因为C,O,D共线角COD等于180度角2等于角1的补角因为∠1=∠3所以角2也是角3的补角角AOB等于180度A,O,B三点在同一条直线上
证明:由∠APB=90°得AB为直径,∴∠ACB=90°.∵PC平分∠APB,交⊙O于点C.∴∠CPA=∠CPB.由同圆或等圆中圆周角相等则弦也相等,∴AC=BC,∴△ABC为等腰直角三角形.
(1)连结DO,则A0=DO,所以∠A=∠ADO.因为∠A+∠CDB=90°,所以∠ADO+∠CDB=90°所以∠ODB=90°,即直线BD与⊙O相切.(2)连结DE,由题易得△ADE与△ACB相似,
∠ABC=180°-1/2∠AOC=115°
(1)连接OC. ∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°. ∵OA=OC,∴∠A=∠ACO,∵∠A=∠PCB,∴∠
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60