如图,∠ACB=∠D=90°,AC²=AB·CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:25:25
如图,∠ACB=∠D=90°,AC²=AB·CD
如图,三角形ABC中,∠ACB=90°,点D.E在AB上,且

解题思路:利用等腰三角形性质解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,∠ACB=90°,点D、E是Ac、AB中点,点F在BC延长线上且∠CDF=∠A,①证等腰三角形ACB②证等腰梯形D

证EC=EB是吧E是直角三角形斜边中点,有这个定理,直角三角形斜边中线等于斜边一半,这个题里是EC=EB=EA

如图,在三角形ABC中,∠ACB=90°,AC=BC,点D为AB的中点

⑴连接CD,∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵D为AB中点,∴AD=BD=CD,CD⊥AB,∠DCA=∠DBC=45°,在ΔDAE与ΔDCF中:DA=DC,∠A=∠DCF=45°

如图,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点,求证:△ACD≌△BCE

证明:∵∠ACB=∠DCE=90°∴∠ACB-∠ACD=∠DCE-∠ACD即:∠BCD=∠ACE∵△ACB和△ECD都是等腰直角三角形∴BC=ACDC=EC∴△ACE≌△BCD(SAS)

如图,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点 (1)求证:△ACD≌△BCE

第1问:∵△ABC和△DCE都是等腰直角三角形,∴AC=BC,CD=CE.∵∠ACB=∠DCE,∴∠ACD+∠BCD=∠BCE+∠BCD,∴∠ACD=∠BCE.在△ACD和△BCE中AC=BC∠ACD

如图,△ACB和△DCE都是等腰直角三角形 ∠ACB=∠DCE=90° D为AB上一点

∵AC=BC,∠BAC=90∴∠A=∠ABC=45∵∠ACD=∠ACB-∠BCD,∠BCE=∠DCE-∠BCD,∠ACB=∠DCE∴∠ACD=∠BCE∵AC=BC,DC=EC∴△ACD≌△BCE(SA

已知:如图,在△ABC中,∠ACB=90度,CD⊥AB,垂足为点D,

证明三角形全等就行了(角边角原理)ASA由题意可得∠B+∠BCD=∠ECF+∠BCD=90所以∠B=∠ECF又∵∠ACB=∠CEF=90,CE=BC∴△ABC=△FCE(ASA)∴AB=FC

如图,ΔACB和ΔECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求∠EAC的度数.

∵Δacb和Δecd都是等腰直角三角形∴∠dac=∠dec=45°∠ecd=90°∴daec四点共圆又∵∠ecd=90°∴ed为圆的直径∴∠ead=90°又∵Δacb是等腰直角三角形∴∠eac=90°

如图,Rt△ABC中,∠ACB=90°,D是AB上一点,AE垂直CD,AC2=ABxCE,求证:点D是AB中点

证明:∵∠ACB=90∴∠ACE+∠BCE=90∵AE⊥CD∴∠AEC=∠ACB=90∴∠ACE+∠CAE=90∴∠CAE=∠BCE∵AC²=AB×CE∴AC/AB=CE/AC∴△ABC∽△

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,

设AD=X、CD=Y、BC=Z在Rt△ABC中,∠ACB=90°,CD⊥AB所以三角形ACD相似三角形CBD所以AD/CD=CD/BD所以CD平方=AD×BD即Y平方=9X(1)在三角形ACD和三角形

如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点

是不是求<DCE如果是:(注,<表示角)<BEC=<ECB=<DCE+<DCB,<CDA=<ACD=<DCE+<ACE,<CDA=<B+<DCB,<BEC=<A+<ACE,<B+<DCB=<DCE+<

如图,在等腰Rt△ABC中,∠ACB=90°,D是斜边上一点,AE⊥CD于点D

在等腰Rt△ABC中,AC=BC,∠CAB=∠CBA=45°;CH⊥AB,∠ACH=∠BCH=45°;BF⊥CD,AE⊥CD,∠GAH+∠CAG=∠CAB=45°;∠CAG=45°-∠GAH;∠AGH

如图,在△ABC中,∠ABC与∠ACB的外角平分线交于点D,则∠D=90°-2/1∠A

因为∠CBA+∠ACB=180-∠A所以∠EBC+∠FCB=180+180-(∠CBA+∠ACB)=360-180+∠A=180+∠A又因为∠DBC+∠DCB=1/2(∠EBC+∠FCB)=90+∠A

如图,在△ACB中,∠ACB=90°,D为BC中点,E为AD中点,FG//AC.

过点D,作DH//CF,因为D是BC的中点,所以FH=BH,又因为E是AD的中点,所以AF=FH在直角三角形ACD中,E是斜边AD的中点,CE是斜边上的中线,所以有:CE=AE=ED又因为FG//AC

(2014•丰润区二模)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠

∵在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDB′由△CDB反折而成,∴∠CB′D=∠B=65°,∵∠CB′D是△AB′D的外角,∴∠ADB′=∠CB′D

如图,Rt△ABC中,∠ACB=90°,D,E分别是AB,BC的中点

亲···你的图···1;四边形DCFE为平行四边形,理由如下:连接DE,因为E为CB中点,所以CE=BE,DE=DE.因为D,E分别是AB,BC的中点,所以DE为Rt△ABC的中位线,所以DE平行且等

如图,在△ABC中∠ACB=90°,点D在AB上,且CD平分∠ACB,过点D作DE⊥AC,DF⊥BC,垂足分别为点E、F

证明:∵∠ACB=90°,DE⊥BC,DF⊥AC,∴四边形CFDE是矩形.又∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF.∴四边形CFDE是正方形(有一组邻边相等的矩形是正方形)

如图,△ACB中,∠ACB=90°,∠1=∠B.

(1)∵∠1+∠BCD=90°,∠1=∠B∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=12AC•BC=12AB•

如图△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:AD²+DB&sup

取AB的中点F,连接CF.已知,△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,可得:△ACB和△ECD都是等腰直角三角形;所以,AF=BF=CF,DE²=2CD².