如图,P是等腰Rt三角形ABC内一点,AC=BC,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:32:19
如图,P是等腰Rt三角形ABC内一点,AC=BC,且
如图,以Rt三角形ABC的顶点A为直角顶点,AB.AC为直角边,以三角形ABC分别作等腰Rt三角形ABD,

显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

如图,RT三角形ABC中,

如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4

1如图,以三角形ABC,AB,AC边构造等腰Rt△ABD,等腰Rt△ACE,M,N,P分别是AD,AE,BC中点,求线段

以AB构造等要Rt△ABD,是以AB为斜边吗?再问:都是直角边再答:都是在A处形成直角吗?即∠BAD=∠CAE=90°再问:是∠DBA=∠ACE=90再答:1连接并延长BM至X,使BM=MX,连接DX

如图,在等腰Rt三角形ABC中,∠ACB=90°,D是斜边上一点,AE⊥CD于点E,BF⊥CD,交

证明;在Rt三角形DEA和DHC中易得角DAE=角DCH(1)又三角形ACB是等腰直角三角形则HA=HB=HC则有角BAC=角CBA=角BCH(2)有12可得角BCF=角CAE(3)在三角形ACG和三

如图,D是等腰RT三角形ABC的直角边BC上的一点,AD的垂直平分线EF分别交……

简单得到EA=ED,假设AE=aEC=2-aCD=根号2那么直角三角形ECD中2+(2-a)^2=a^22+4-4a+a^2=a^24a=6a=3/2所以AE=3/2过D作DG垂直AB于G,则三角形B

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

百度问问 我要提问:已知等腰RT三角形ABC,AB=AC,等腰RT三角形APD,P是三角形内一点,AP=AD=2,PC=

答:连接DC∵∠BAC=∠BAP∠PAC=90°=∠PAD=∠CAD∠PAC∴∠BAC=∠CAD∵AB=AC,AP=AD∴△ABP≌△ACD∴CD=BP=3,∠ADC=∠APB∵AD=AP=2,∠PA

如图,已知等腰Rt△ABC与等腰Rt△BDE,P为CE中点,连接PA、PD,试探究PA、PD的关系.

PA=PD,PA⊥PD,理由是:证明:延长AP至F,使AP=PF,连接EF、AD,在△APC与△FOE中,AP=PF∠APC=∠FPECP=EP,∴△APC≌△FOE(SAS),∴AC=EF,∠ACP

如图,三角形ABC是等腰直角三角形

50平方厘米,利用旋转

如图等腰Rt三角形ABC中,Ac=BC,角AcB=90度,P为三角形ABC形外一点,CP平分角APB

做CE⊥AP于E,CF⊥PB于F∵CP平分∠APB∴CE=CF∵AC=BC∴RT△ACE≌RT△BCF(HL)∴∠BCF=∠ACE∵∠ACF+∠BCF=90°∴∠ACE+∠ACF=∠ECF=90°∴∠

如图,已知等腰RT三角形ABC中

解题思路:由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,

如图,p是三角形abc的角abc和角acb的平分线的交点,过点p做dec……找出图中的等腰三

等边三角形是三角形BDP和三角形CEP∵BE是∠B的角平分线∴∠DBP=∠PBC又∵DE平行BC∴∠DPB=∠DBP(两直线平行,内错角相等)∴PD=DB同理PE=EC∴DB+EC=DE

在等腰RT三角形ABC中,AB=BC=5,P是三角形ABC内一点,且PA=根号5,PC=5,求PB

等腰RT三角形ABC中,AB=BC=5,则:∠ACB=∠BAC=45°,且有勾股定理知:AC^2=AB^2+BC^2=25+25=50,所以:AC=5√2令∠ACP=a

如图1 在等腰rt三角形abc中,求赐教

你学过相似三角形没?学过我在给你发上来,没学过我就换个方法做.再问:学过全等三角形。。。再答:再答:因为初二知识有限,所以做法只能这样了,其中要作一些辅助线,全等三角形我基本没证明,应该不太难证的,有