如图,pq为圆o的直径,点B在

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:59:21
如图,pq为圆o的直径,点B在
如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说

直线PQ与⊙O的位置关系是:相切.其理由如下:①连接OP、CP.∵BC是直径,∴CP⊥AB,在Rt△APC中,Q为斜边AC的中点;∴PQ=CQ=12AC(直角三角形斜边中线等于斜边一半),∴∠QPC=

如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点P是直径MN上一动点PA+PB的最小值

首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这

如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且

蛋蛋小崽崽,你好:楼上的几位都做不对,设大圆圆心为E,连接EQ,EP,显然EQ=EP-PQ=5-3=2,延长PQ交AB于G,设AB=2X,则DQ=X=AG,EG=QG-QE=2X-2,AG=X.于是在

如图,在三角形ABC中,角BCA=90度,以BC为直径的圆O交AB于点P.Q是AC的中点,判断直线PQ与圆O的位置关系

连接OQ、PC因为BC是直径,所以角BPC=角APC=90度因为Q是AC中点,所以PQ=CQ因为OC=OP,OQ=OQ,所以三角形OCQ与OPQ全等,所以角OPQ=角OCQ=90度,所以PQ与圆相切

如图,PQ为半圆O的直径,A为以OQ为直径的半圆A的圆心,圆O的弦PN切圆A于点M,PN=8,则圆A的半径为______

如图所示,连接AM,QN.由于PQ是⊙O的直径,∴∠PNQ=90°.∵圆O的弦PN切圆A于点M,∴AM⊥PN.∴AM∥QN,∴PMPN=PAPQ=34.又PN=8,∴PM=6.根据切割线定理可得:PM

如图AB是圆O的直径,C是BA延长线上的一点,CD与圆O相切于点D连接OD,四边形PQRS是矩形,其中点PQ在半径OA上

【我想,此题应该不只一问吧,第二问是不是求矩形PQRS的面积呢?】【图在上传中请稍等】1)∵CD是⊙O切线,切点为D∴OD⊥CD(圆的切线垂直于过切点的半径)∴Rt△COD中,∠CDO=90°∴CO&

如图,在三角形ABC中,角BCA等于90度,Q是AC的中点,以BC为直径的圆0交AB于点P,判断直线PQ与圆O的位置关系

相切再问:有过程吗再答:这不好说再答:很明显的啊再问:额再问:我也知道再问:但不会证明再答:你几年级再问:初三再答:哦再答:你最后只要证明PQ⊥OP就好了再问:还是不会再答:哎再答:这字太多了再答:你

如图,MN是半径为1的圆O的直径,点A在圆O上,角AMN=30度,B为AN弧的中点,P是直径MN上一动点,则PA+PB的

在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB

如图,已知AB为⊙O的直径,点C为半圆上的三等分点,在直径AB所在的直线上找一点P,连接CP交⊙O于点Q,使PQ=OQ,

①当P在直线AB延长线上时,如图所示:连接OC,设∠CPO=x°,∵PQ=OQ,∴∠OQP=∠CPO=x°,∴∠CQO=2x°,∵OQ=OC,∴∠OCQ=∠CQO=2x°,∵点C为半圆上的三等分点,∴

如图,AB为圆o 的直径,p为半圆弧的中点,过p任作直线pq(pq与线段ab不相交),过a,b分别做pq的垂线,cd为垂

   证明连PA、PB∵AB是直径∴∠APB=90°∴∠APC+∠BPD=90°∵AC⊥CD,BD⊥CD∴∠APC+∠CAP=90°∴∠CAP=∠BPD∵P为半圆弧的中点

(2014•株洲)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两

(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.∵AB与⊙O相切于点A,∴OA⊥AB.∴∠OAB=90°.∵OQ=QB=1,∴OA=1.∴AB=OB2−OA2=22−12=3.∵△ABC是等

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的

此题要把图画对就行了两个圆是内切的,小圆在大圆内,这样就很简单了设大圆的圆心为M点,连接MA,MD,延长PQM与AB交于E,设AB=2a(正方形的边长),在直角三角形MAE中,AM^2=ME^2+AE

如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形

设大圆的圆心为M点,连接MA,MD,延长PQM与AB交于E;设AB=2a(正方形的边长),在直角三角形MAE中,∵小圆在正方形的外部且与CD切于点Q.∴PQ⊥CD,∵CD∥AB,∴PE⊥AB,∴AE=

如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且

设AH为 x,AB为 2x,△PAK是直角三角形(直径上的圆周角是直角)△APH∽△AHK,∴HK/AH=AH/PH  ,即:HK=10-(3+2x)=7-2x

如图,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且

设大圆的圆心为M点,连接MA,MP,MB,连接PM并延长与AB交于点E,交小圆于Q点,由对称性可知P、Q为切点,E为AB的中点;设AB=2a(正方形的边长),在直角三角形MAE中,∵小圆在正方形的外部

如图,PQ=10,以PQ为直径的圆与一个以20为半径的⊙O内切于点P,与正方形ABCD切于点Q,其中A、B两点在⊙O上.

连接OA,∵两圆内切,∴P、Q、O共线,设过P、Q、O的直线交AB于R,AB=x,则OQ=OP-PQ=10,RO=RQ-OQ=x-10,(2分)∵CD与小圆切于点Q,∴QR⊥CD,QR⊥AB,∴根据垂