如图,P,Q分别为正方形ABCD的边BC,DC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:19:29
如图,P,Q分别为正方形ABCD的边BC,DC
如图,点P,Q分别是边长1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,速度为1c

(1).作PE⊥AC于E则△CEP相似于△CBAPE/AB=CP/AC正方形ABCD中AB=1∴AC=根号2又CP=1-XPE=(1-X)根号2*1/1S△APQ=y=AQ*PE/2=(-根号2/2)

(2013•湖州二模)如图,点P,Q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝

(1)如图,过点P作PE⊥AC于E,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴△PCE是等腰直角三角形,∵点P的速度为1cm/s,∴PC=1-x,∴PE=22PC=22(1-x),∵点Q的

急!坐等大神解答1、 如图,在等边三角形ABC中,D、Q、P分别为AB、AC、BC中点,M为直线BC上任意一点

因为两个三角形都是等边三角形所以角PDM和SDQ相等DM=DS又因为.是中点所以DP=DQ所以三角形DPMDQS全等所以PM=QS

如图,点P,Q分别是边长1CM的正方形ABCD的边BC和对角线AC上的两个动点,P从B出发,朝BC方向运动,速度为1CM

因为Q的运动速度为√2厘米/秒,P的运动速度为1厘米/秒.且AC=√2,BC=1所以:CQ/AC=CP/BC所以:AB‖PQ.而:BP=x,AQ=(√2)x所以:PQ=PC=1-x,所以:△ABP的面

1,如图,等边三角形ABC的边长为3,点P、Q分别是AB、BC上的动点(点P、Q与三角形ABC的顶点不重合),且AP=B

1.取AB的中点D,连接CD,因ABC为等腰三角形,故CD⊥AB,CDP为直角三角形.则有CP=√(CD²+DP²),其中CP=Y,CD=3√3/2,DP=3/2-AP=3/2-X

如图,已知三角形ABC三边上的高AD、BE、CF相交于H,P、Q分别为CH和AB中点,求证PQ垂直平分DE

证明:如图.连接PE,PD,QE,QD,PQ∵AD,CE分别是△ABC的高∴∠BDF=∠ADC=∠AEC=∠BEF=90°∴△ADC,△BDF,△AEC,△BEF都是直角三角形∵点Q是AC的中点∴QE

已知,分别以AB/AC为边向三角形ABC外作正方形ABDE,M,N,P,Q分别是EF,BC,EB,FC的中点,证明MPN

图中的黑色和红色的钝角都是直角加角BAC,则黑色角=红色角用边角边证图中的黑三角形和红三角形全等,得到CE=BF角1与角3互余,角2=角1,角3=角4,所以角2与角4互余,CE垂直BF用三角形中位线性

如图,等边三角形ABC的边长为3,点P、Q分别是AB、BC上的动点(P、Q与三角形ABC的顶点不重合),且AP=BQ,A

1.用cosine定律可知,y^2=x^2+3^2-2*x*3*cos(60)=x^2-3x+90x^2-9x+9=0==>x=(9±√(45))/2因x

如图,点P,Q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,速度为1

(1)PQ=1-x,所以△APQ以AQ为的高为(1-x)*0.5*2^0.5.y=0.5*(1-x)^2*0.5*2^0.5.;(0

如图,点P,Q分别是边长为1cm的正方形ABCD的边 BC和对角线AC上的两个动点,点P从B出发,朝B C方向运动,速度

1)x的取值当然是从0到1根据速度来计算,P和Q同时到达C点,△APQ的面积是梯形ABPQ减去三角形ABP的面积,也就是三角形ABC的面积减去三角形PCQ的面积再减去三角形ABP的面积.y=△ABC-

如图,点P,Q分别是边长为1cm的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发

1)x的取值当然是从0到1根据速度来计算,P和Q同时到达C点,△APQ的面积是梯形ABPQ减去三角形ABP的面积,也就是三角形ABC的面积减去三角形PCQ的面积再减去三角形ABP的面积.y=△ABC-

如图,点P,Q分别是边长1㎝的正方形ABCD的边BC和对角线AC上的两个动点,点P从B出发,朝BC方向运动,运动速度为1

1.由题意得y=1/2-x/2-(1/2)√2(1-x)²*√2/2=(-x²+x)/2,0≤x≤1.2.y=1/6=(-x²+x)/2,判别式=-3

如图,正方形ABCD中,AE=EF=FB,BG=2GC,DE,DF分别交AG于P、Q,若正方形面积为S,则三角形DPQ的

设正方形边长为a,延长AG、DC相交于H,分别由P、Q做AD的垂线交AD于M、N,∵∠AGB=∠CGH∠BAG=∠CHG∴△ABG∽△CHG∴CH/AB=CG/BG∴CH=1/2aDH=3/2a同理△

如图,△ABC是边长为10的等边三角形,动点P和动点Q分别从点B和点C同时出发,沿着△ABC逆时针运动,已知动点P的速度

1)2t-t=20∴t=202)①P在BC上,Q在AC上则0<t≤5∴0.5(10-t)×根号3t=8根号3t1=2t2=8(不合舍去)②P在BC上,Q在AB上5<t≤100.5(10-t)×根号3(

如图,在△ABC中,BC=12,高AD=18,正方形PQMN内接于△ABC,P.Q在BC边上,MN分别在AC.AB上,求

设正方形PQMN的边长为X∵正方形PQMN边长为X∴MN=PQ=PN=QM=X∵AD⊥BC∴矩形PNED∴ED=PN=X∵AD=18∴AE=AD-ED=18-X∵MN∥BC∴MN/BC=AE/AD∵B

如图,已知△ABC是变长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、B

(1)∵点P的运动速度为1cm/s,点Q的运动速度为2cm/s∴AP=t,BQ=2t∴BP=6-t∵t=2∴BP=6-2=4,BQ=2×2=4∴BP=BQ∴△BPQ为等腰三角形又∵在等边三角形ABC中

如图,已知等边三角形ABC和等边三角形CDE,P、Q分别为AD、BE的中点.如果将(2)如果将等边三角形CDE绕点C旋转

1、证明:∵等边△ABC∴BC=AC,∠C=60∵等边△CDE∴CE=CD∴AD=AC-CD,BE=BC-CE∵P是AD的中点∴PD=(AC-CD)/2∴CP=CD+PD=(AC+CD)/2同理可得:

如图,在等边三角形abc中,点p,q分别在ac,bc上,且a

解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程: