如图,O为直线AB上一点,角COD等于25度,OD平分角AOC,角DOE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:30:38
24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C
(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
设角AOE为X角BOD=180度-2X角COB=7/5X角BOD+角COB=90度=180度-2X+7/5XX=角AOE=60度角COE=90度+角DOE=90度+角AOE=150度
(1)证明:连OC,如图∵直线CD与⊙O相切于C,∴OC⊥CD,又∵AD⊥CD,∴AD∥OC,∴∠1=∠2,∵OC=OA,∴∠1=∠3,∴∠2=∠3,又∵AB为⊙O的直径,∴∠ACB=90°,∴Rt△
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
连BF易证∠ABF=∠ADF(都是弧AF所对的圆周角)又DF是直径∠ADG=∠ABD∴∠FDG=∠ADF+∠ADG=∠ABF+∠ABD=∠FBD=90°∴DG是⊙O的切线即CD是⊙O的切线
(1)直线BD与⊙O相切.证明:如图,连接OB.∵∠OCB=∠CBD+∠D,∠1=∠D,∴∠2=∠CBD,∵AB∥OC,∴∠2=∠A,∴∠A=∠CBD.∵OB=OC,∴∠BOC+2∠3=180°.∵∠
∠AOC ∠BOE 2∠DOC+∠BOE 2∠AOD+∠BOE
∠ACG=∠ABC=∠AFC,∠CAF公共,⊿ACG∽⊿AFC即AC÷AF=AG÷AC故AC^2=AG*AF
此题为2013•东营中考题,分析:(1)连接OC,根据OA=OC,推出∠BAC=∠OCA,求出∠OCA=∠CAM,推出OC∥AM,求出OC⊥CD,根据切线的判定推出即可;(2)根据OC=O
①当P在直线AB延长线上时,如图所示:连接OC,设∠CPO=x°,∵PQ=OQ,∴∠OQP=∠CPO=x°,∴∠CQO=2x°,∵OQ=OC,∴∠OCQ=∠CQO=2x°,∵点C为半圆上的三等分点,∴
望采纳嘻嘻嘻60度首先∠boc是直角,∠bod:∠cod=4:1∠bod必须等于∠boc+∠cod即∠boc=3*∠cod=90°所以∠cod=30°所以∠bod=120°∠aod=180°-120°
如果满意记得采纳哦!你的好评是我前进的动力.(*^__^*) 嘻嘻……我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!
(1)证明:连接OC,∵AB是⊙O直径,C为圆周上的一点,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OC=OB,∴∠OCB=∠OBC,又∠MCA=∠CBA,∴∠MCA=∠OCB,∴∠ACO+
连接CO,根据一条弧所对的圆周角等于它所对的圆心角的一半,所以∠COB=2∠CAB由AC平分∠DAB,所以∠COB=∠DAB即CO∥AD∠ADC=∠OCB=90°经过圆心且垂直于切线的直线必经过切点所
证明:如图,连接PB、BR,则∠APC=45°,∠APB=90°;故∠BPQ=180°-∠APC-∠APB=45°;又∵∠APB=90°=∠BQR,∴B、Q、R、P四点共圆;于是∠BRQ=∠BPQ=4