如图,OP平分∠MON,PA⊥ON,垂足为点A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:00:21
(1)∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∵AD、CE分别是∠BAC和∠BCA的平分线,∴∠EAF=∠CAF= 1/2∠BAC=15°,∠DCF=∠ACF= 1/
考点:全等三角形的判定与性质.专题:探究型.分析:根据要求作图,此处我们可以分别做两边的垂线,这样就可以利用AAS来判定其全等了.先利用SAS来判定△AEF≌△AGF.得出∠AFE=∠AFG,FE=F
考点:全等三角形的判定与性质.专题:探究型.分析:根据要求作图,此处我们可以分别做两边的垂线,这样就可以利用AAS来判定其全等了.先利用SAS来判定△AEF≌△AGF.得出∠AFE=∠AFG,FE=F
证明:过点P作PD⊥OA于D,PE⊥OB于E∵PD⊥OA,PE⊥OB∴∠PDA=∠PEB=90∵∠1+∠2=180,∠PBE+∠2=180∴∠1=∠PBE∵PA=PB∴△APD≌△BPE(AAS)∴P
∵OR平分∠QON,OP平分∠MON∴∠PON=1/2∠MON,∠RON=1/2∠NOQ∴∠PON+∠NOR=1/2(∠MON+∠QON)∴∠POR=1/2∠MOQ∵∠MOQ=90°∴∠POR=45°
http://zhidao.baidu.com/question/139983464.htmlhttp://wenwen.soso.com/z/q90954740.htm?rq=177720299&r
∠MON=45°因为找不到你的图,所以有两种情况:(1)OC在∠AOB中.(2)OC在∠AOB外.但不管是那种情况,∠MON都是45°(1)OC在AOB中,则ON平分∠AOC,设∠AON为∠1,OM平
(1)∵OA⊥OB∴∠AOB=90°∵∠AOM=∠MOC,∠CON=∠NOB∴∠MON=1/2∠AOB=45°(与∠BOC的度数无关)(2)∵∠AOM=∠MOC=1/2∠AOC,∠CON=∠NOB=1
过点P作PE⊥0A于点E,PF⊥0B于点F∵PE⊥0A,PF⊥0B∴角AEP=角BFP=90度∵角2+角FBP=180度,角1+角2=180度∴角FBP=角1在△PAE和△PBF中{角AEP=角BFP
AB∥ON证明:∵OP平分∠MON∴∠MOP=∠NOP∵∠BOA=∠BAO∴∠BAO=∠NOP∴AB∥ON(内错角相等,两直线平行)
证明:(1)∵OP平分∠MON∴∠1=∠2∵PB∥OM∴∠1=∠3(两直线平行,内错角相等)∴∠2=∠3(等量代换)(2)∵PA∥ON∴∠APO=∠2(两直线平行,内错角相等)∴∠APO=∠3(等量代
证明:∵P为∠MON平分线上一点,PA⊥OM,PB⊥ON,∴PA=PB,∠PAO=∠PBO=90°,在Rt△PAO和Rt△PBO中,OP=OPPA=PB,∴Rt△PAO≌Rt△PBO(HL),∴OA=
连接OC∵OB=OC∴∠OBC=∠OCB∵PO∥BC∴∠AOP=∠OBC,∠COP=∠OCB∴∠AOP=∠COP∵PO=PO,OC=OA∴△OAP≌△OCP∴∠OAP=∠OCP∵PA是切线,AB是直径
额,图,再问:再问:求证PC是圆O切线再答:再问:((((;゚Д゚)))))))......谢谢.......
延长BP交OM于C∵∠MON=6O°,PB⊥ON∴∠OCB=30°∵PA⊥OM,PA=2∴PC=4,AC=2√3∵PB=11∴BC=PB+PC=11+4=15∵∠OCB=30°,PB⊥ON∴OC=10
证明:作PM⊥OA,PN⊥OB交OA,OB于M,N,∵∠AOP=∠POB,∴PM=PN,∵∠OBP+∠OAP=180°,∠OBP+∠PBN=180°,∴∠MAP=∠NBP,在△PMA和△PNB中,∠M
(1)∵∠BAM是△AOB的外角∴∠BAM=∠AOB+∠ABO∵∠ABN是△AOB的外角∴∠ABN=∠AOB+∠BAO∴∠BAM+∠ABN=∠AOB+∠ABO+∠AOB+∠BAO=(∠AOB+∠ABO
证明:过点P作PE⊥OA交OA的延长线于E,PF⊥OB于F∵PE⊥OA,PF⊥OB∴∠AEP=∠BFP=90∵∠2+∠FBP=180,∠1+∠2=180∴∠FBP=∠1∵PA=PB∴△PAE≌△PBF
如果我没猜错图的话...(1)∵∠PAO=∠PBO=90°且PA=PB且PO=PO∴△PAO≌△PBO∴∠POA=∠POB即∠POM=∠PON∴OP平分∠MON(2)当∠OCP+∠PDB=180°时P
证明:∵OP平分∠MON∴∠1=∠2∵PB∥OM∴∠1=∠3(两直线平行,内错角相等)∴∠2=∠3(等量代换)∵PA∥ON∴∠APO=∠2(两直线平行,内错角相等)∴∠APO=∠3(等量代换)∴OP平