如图,e是△abc外一点,d在be上,且角bad=25
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:13:27
解法一:EF平行于AB,DF平行于BE,可以得到四边形DBEF是平行四边形.BD‖EF,BD=EF.D是AB的中点,AD‖EF,AD=EF.∴四边形ADEF是平行四边形,所以DF与AE是互相平分.解法
∵∠ACD=∠B∠BAC=∠CAD∴△ACD∽△ABC∵AD²=AE·AC即AD/AE=AC/AD∠DAE=∠CAD∴△ADE∽△ACD∴△ADE∽△ABC∴S△ADE/S△ABC=(DE/
1)AE与DF互相平分(2)证明:连接DE,AF∵EF‖AB,DF‖BE∴四边形BEFD是平行四边形∴BD=EF∵D是AB中点∴AD=BD=EF∴四边形ADEF是平行四边形∴AE与DF互相平分
由题可知角A=60角ACD=30所以角ADC=90因为角DBO+角DOB=90,且角DOB=55所以角ABE=35这是我算的过程,不得65,你看看是不是题的角度标错了
你想学如何发图就找我吧,
(1)证明:∵AB=AC,∴△ABC是等腰三角形,又∵点D为BC的中点,∴∠BAE=∠CAE(三线合一),在△ABE和△ACE中,∵AB=AC∠BAE=∠CAEAE=AE,∴△ABE≌△ACE(SAS
(1):设AE与BC交点于M,BE与AD交点于N,即在△ACM和△BEM中有∠C+∠CAE=∠E+∠EBC①;同理可得∠D+∠EBD=∠E+∠EAD②;(顶角的知识)又因为角平分线,有∠CAE=角EA
(1)∵AB=AC,∴∠B=∠C=12(180°-∠BAC)=90°-12∠BAC,∴∠ADC=∠B+∠BAD=90°-12∠BAC+40°=130°-12∠BAC,∵∠DAC=∠BAC-∠BAD=∠
(1)AE与DF互相平分(2)证明:连接DE,AF∵EF‖AB,DF‖BE∴四边形BEFD是平行四边形∴BD=EF∵D是AB中点∴AD=BD=EF∴四边形ADEF是平行四边形∴AE与DF互相平分
延长FD到G,使得DG=DE.然后连接MG.那么因为∠ADE=∠CDF,∠ADG与∠CDF是对顶角.所以∠ADE=∠ADG.然后有他们的两个补角∠EDM=∠GDM,然后对于三角形EDM与三角形GDM由
延长EB到点G,使BG=CE,连接DG根据题意可得:∠DBG=∠DCF=90°∵DB=DC∴△BDG≌△CDF∴∠BDG=∠CDF,DG=DF∵∠BDC=120°,∠EDF=60°∴∠EDG=∠EDF
证明:(1)在△ADE和△ACD中,∵∠ADE=∠C,∠DAE=∠DAE,∴∠AED=180°-∠DAE-∠ADE,∠ADC=180°-∠DAE-∠C,∴∠AED=∠ADC.(2分)∵∠AED+∠DE
证明:(1)∵∠A=∠A,∠ACD=∠B,∴△ADC∽△ACB,∵ADAC=ACAB,∵AD2=AE•AC∴ADAC=AEAD,∴ACAB=AEAD,∴DE∥BC;(2)∵DE∥BC,∴△ADE∽△A
证明:(1)∵△ABC是等边三角形,∴AB=AC,∴A在BC的垂直平分线上,∵BD=DC,∴D在BC的垂直平分线上,∴AD是BC的垂直平分线;(2)①过D作DM⊥EF,连接AD,∵AD是BC的垂直平分
(1)证明:∵ABAC=ADCE,∠BAD=∠ECA,∴△BAD∽△ACE,∴∠B=∠EAC,∵∠ACB=∠DCA,∴△ABC∽△DAC,∴ACCD=BCAC,∴AC2=BC•CD.(2)∵△BAD∽
∠1+∠2+∠3+∠4+∠C=180(∠1=∠2)-----2∠2+∠3+∠4+∠C=180∠3+∠4+∠5+∠6+∠D=180(∠5=∠6)-----2∠5+∠3+∠4+∠D=180以上可以推出∠2
证明:(1)∵∠BAD=∠BCE,∠ABD=∠CBE,∴△ABD∽△CBE;(2)∵由(1)知,△ABD∽△CBE.∴ABDB=BCBE,∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠CBD,
由题意知:三角形ABC、ADE均为以A为顶点的等腰三角形 ∠4=180度-2∠2·······················①∠3=180度-2∠1····················
根据已知条件:角CBE=角ABD,角BCE=角BAD可以判定△ABD∽△CBD,所以AB:BD=CB:BE且∠ABD=∠CBE;而∠ABC=∠ABC+∠DBC;∠DBE=∠CBE+∠DBC,故∠ABC