如图,ED⊥AB,FC⊥AB,AE∥BF,AF=BF. 求证:
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:03:30
证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,在Rt△ABC和Rt△CDE中,AB=CDAC=CE,∴Rt△ABC≌Rt△CDE(HL),∴∠A=∠ECD,∵∠A+∠ACB=90°,∴
1)相似证明:延长FE,CD交于点PAE=ED角AEF=角EPD所以直角三角形AEF和EPD全等所以FE=EP即EC为FP中垂线所以角FCE=角ECD所以直角三角形EFC相似于EDC且直角三角形EDC
证明:∵AE⊥AB,BC⊥AB,∴∠EAD=∠CBA=90°,在Rt△ADE和中Rt△ABC中,DE=ACAE=AB,∴Rt△ADE≌Rt△ABC(HL),∴∠EDA=∠C,又∵在Rt△ABC中,∠B
连接AD则角EAD=角EDA=角DAB所以三角形ACD与三角形ADB全等所以CD=BD
连接AE、FD因为AB=CD,BE=FC又因为BE//FC,所以
设AD=2x,AB=b,DG=AF=a,则FB=b-a,∵∠GEC=90°,ED⊥CD,∴ED2=GD•CD∴x2=ab,假定△AEF与△BFC相似,则有两种情况:一是∠AFE=∠BCF;
⑴ΔAEF∽ΔDCE.理由:∵ABCD是矩形,∴∠A=∠D=90°,∴∠2+∠3=90°,∵EF⊥CE,∴∠1+∠2=90°,∴∠1=∠3,∴ΔAEF∽ΔDCE.⑵设两个三角形相似,∵∠EFC是锐角,
证明:∵AB=AC,EB=ED∴∠B=∠EDB=∠ACB∴AC平行于EF又∵E是AB中点∴AC=AB=2EB=2ED=EF∴四边形AEFC是平行四边形
(1)在Rt△ABC与Rt△CDE中∵AB=CDAC=CE∴Rt△ABC≌Rt△CDE∠A=∠DCE∵∠A+∠ACB=90º∴∠DCE+∠ACB=90º从而∠ACE=90º
因为ED⊥AB,FC⊥AB,垂足分别为D、C,AE平行BF,且AE=BF所以∠A=∠B,∠EDA=∠FCB=90°,AE=BF所以△AED≌△BFC(AAS)所以AC=BD若ED⊥AB,FC⊥ABAE
证明:∵∠EDA+∠CDB=90∠EDA+∠AED=90∴∠CDB=∠DEA在△EDA和△DCB中ED=DC∠CDB=∠DEA∠A=∠B∴△EDA≌△DCB(AAS)∴AE=DBAD=BC∴AE+BC
第一问,当然是直角九十度啦.GBDF是矩形,那三组对边平行且相等可证.第二问,24*18=432啦,矩形嘛第三问,当然是两对三角形全等可知道,六边形的面积等于矩形的面积,所以也是432.
∵AD=CFCD=CD∴AC=DF又∵AB=EFBC=ED∴△ABC≌△DEF(SSS)∴角ACB=角EDF∴BC∥DE
证明:连接AC,AD,BC∵AB是直径∴∠ACB=90°∴∠BAC+∠B=90°∵AE⊥CD∴∠D+∠DAE=90°∵∠B=∠D(同弧所对的圆周角相等)∴∠BAC=∠DAE∴弧BC=弧DE
解,由题得角ABC=角EDC=角ACE=90度因为,角ECD与角ACB互余;角ACB与角CAB互余所以角CAB=角ECD又因为,CD=AB所以三角形EDC全等于三角形ABC所以,AB=CD
很高兴为您解答! 分析:(1)连接OC.欲证FC是⊙O的切线,只需证明FC⊥OC即可;(2)连接BC.利用(1)中的∠AED=∠FEC=∠ECF、圆周角定理求得BC=AB•cos
∵∠B+∠C=∠EAC;∠EAC+∠E+∠ADE=180°;∴∠B+∠C+∠E+∠ADE=180°;∵AB=AC,AE=AD;∴∠B=∠C,∠E=∠ADE;∴∠ADE+∠C=90°;∵∠ADE=∠FD
(1)证明:连接OC.∵FC=FE(已知),∴∠FCE=∠FEC(等边对等角);又∵∠AED=∠FEC(对顶角相等),∴∠FCE=∠AED(等量代换);∵OA=OC,∴∠OAC=∠OCA(等边对等角)
相似,画图哦我们设边长为CD=AD=2则AE=ED=1,根据勾股定理EC=√5易证△AEF∽△DCE∴AF=1/2再勾股EF=√5/2再成比例一下外加一个直角自己把过程丰满一下设边长时多加一个比例系数