如图,E.F.G.H分别是BD,BC,AC,AD的中点,且AB=CD.下列结论:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:02:21
如图,E.F.G.H分别是BD,BC,AC,AD的中点,且AB=CD.下列结论:
如图 在四边形ABCD中 点E、F、G、H 分别是BD BC AC AD 的中点

连接EF和HG因为E,F分别是BD和BC的中点,所以EF是三角形BCD的中位线所以EF=1/2CD,且EF平行于CD因为H,G分别是AD和AC的中点,所以HG是三角形BCD的中位线所以HG=1/2CD

如图,已知四边形ACBD中,AC⊥BD,E,F,G,H分别是AB,BC,CD,DA边上的中点,求证:四边形EFGH是矩形

首先题目写错了,应该是四边形ABCD,不是四边形ACBD证明:∵E,F分别是AB,BC边上的中点∴EF是三角形ABC的中位线∴EF∥AC且EF=AC/2同理,GH∥AC且GH=AC/2EH∥BD且EH

如图,在四边形ABCD中,ad=bc,E,F,G,H分别是AB,CD,AC,BD的中点.求证:四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

已知,如图,在四边形ABCD中,AD=BC,点E,F,G,H,分别是AB,CD,AC,BD的中点,求证:四边形EGFH是

证明:∵E是AB的中点,H是BD的中点∴EH是△ABD的中位线∴EH=1/2AD同理:FG是△ACD的中位线,EG是△ABC的中位线,FH是△BCD的中位线∴FG=1/2AD,EG=1/2BC,FH=

如图在四边形ABCD中,AD=BC,点E F G H分别是AB CD AC BD的中点求证四边形EGFH是菱形

证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG

已知:如图,在四边形ABCD中,E,F,G,H,分别是AB,CD,AC,BD的中点.求证:四边形EGFH是平行四边形.

证明:如图∵AB=CD(已知)    E.G为中点∴AE=BE=DG=CG(中点定义)又∵AD=CD(已知)    &n

如图在四边形ABCD中E F G H分别是AB CD AC BD的中点求证四边形EGFH是平行四边形

证明:因为G,E是BD,BC的中点所以GE是△BCD的中位线所以GE∥CD,GE=CD/2同理,FH∥CD,FH=CD/2所以GE∥FH,GE=FH所以四边形EGFH是平行四边形(一组对边平行且相等的

如图,E,F,G,H分别是AB,CD,AC,BD的中点,求证:四边形EGFH是平行四边形

这么简单啊中位线啊FHGE不都和BC平行且等于BC一半吗?同理可得另两边也是啊

如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点

当AB=CD时,四边形EFGH是菱形证明:点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点EG=1/2AB,HF=1/2AB,GF=1/2CD,EH=1/2CDAB=CDEG=GF=EH=

如图,梯形ABCD中,AD‖BC,E、F分别是AB、CD中点,EF分别交BD、AC于点G、H

(1)∵E是AB的中点,F是CD的中点∴EF‖AD∴EG是△ABD的中位线∴EG=1/2AD同理:FH=1/2AD∴EG=FH(2)连接AG并延长,交BC于点M易证△ADG≌△BMG∴AD=BM由(1

如图,已知e、f、g,h分别是ab、bd,cd,ca,的中点,求证:四边形efgh是平行四边形

连接AD,在三角形ABD中,EF是中线所以EF平行AD且EF=AD/2同理在三角形ACD中,HG是中线HG平行AD且HG=AD/2所以EF平行HG且EF=HG所以EFGH是平行四边形

如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F,G,H分别是AO,BO,CO,DO的中点,求证:四边形E

证明:∵四边形ABCD是平行四边形∴AO=CO,BO=DO又∵点E,F,G,H分别是AO,BO,CO,DO的中点∴OE=1/2OA,OF=1/2OB,OG=1/2OC,OH=1/2OD∴OE=OG,O

如图,在平行四边形ABCD中,点G,H分别是AD与BC的中点,AE⊥BD,CF⊥BD,垂足分别为e.f,

联结GB,DH,GH与BD交与O因为四边形ABCD是平行四边形∴AB//CD,AB=CD(平行四边形对边相等,平行)点G,H分别是AD与BC的中点所以GD=bh∴∠ABD=∠BDC∵AE⊥BD,CF⊥

如图,E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,求证:1、四点E,F,G,H共面2、BD/

1、EH是三角形ABD的中位线,GF是三角形CBD的中位线,所以EH和GF均平行于BD,所以EH//GF,即EFGH四点共面.2、因EH是平面EFGH上的直线,由上可知BD//EH所以BD//平面EF

如图,四边形ABCD中,对角线AC,BD相交于点,O,E,F,G,H分别是AD,BD,BC,AC的中点

(1).∵EH∥DC,且EH=(1/2)DC(中位线定理)FG∥DC,且FG=(1/2)DC,(同上).∴EH∥FG.且EH=FG.∴四边形EFGH为平行四边形(平行四边形定义).(2).当四边形AB

如图,E,F,G,H,P,Q分别是AB,BC,CD,DA,AC,BD的中点,下列命题

答:都是真命题.证明:命题1:如图,∵点F、G分别为CB、CD上的中点,∴FG为△CDB的中位线∴GF//DB,GF=DB/2同理可证得HE为三角形ADB的中位线∴HE//DB,HE=DB/2又∵GF

如图,d是三角形abc外的一点 ,连接ad,bd,cd,e,f,g,h,p,q,分别是ab,bc,cd,da,ac,bd

1,∵E为AB中点,H为AD中点∴EH为三角形ABD的中位线∴EH∥BD且EH=1/2BD∵G为DC中点,F为BC中点∴GF为三角形BCD的中位线∴GF∥BD且GF=1/2BD∴EH∥=GF∴四边形E

已知:如图,在平行四边形ABCD中,G、H分别是AD、BC的中点,AE⊥BD,CF⊥BD,垂足为E、F.

证明1,∵ABCD是平行四边形∴AD∥BC,AD=BC(平行四边形的对边平行且相等)∴∠ADB=∠CBD(内错角相等)∵AE⊥BD,CF⊥BD(已知)∴∠AED=∠CFB=90度∴∠DAE=∠BCF(

已知:如图,在平行四边形ABCD中,点E.F分别是AB.CD的中点,CE.AF与对角线BD分别相交于点G.H

证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD∵点E、F分别是AB、CD的中点,∴DH/HB=DF/AB=DF/CD=1/2.∴DH=1/3BD.同理:BG=1/3BD.∴DH=H