如图,e.f.g.h分别是abcd各边的中点,证明图中阴影部分是平行四边形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:25:58
额,赶不上节奏啊再问:楼上的看不懂,团长你能复述一遍吗?再答:GH是三角形DAC的中位线,所以GH=AC/2同理,EF是三角形BAC的中位线,所以EF=AC/2因此GH=EFEH是三角形ABD的中位线
这么简单啊中位线啊FHGE不都和BC平行且等于BC一半吗?同理可得另两边也是啊
连接AC、BDH、G分别是AD、CD的中点,HG||ACE、F分别是AB、BC的中点,EF||AC故HG||EF同理,GF||BD,HE||BDGF||HE所以四边形EFGH是平行四边形.
如图,连结AC,BDEFGH是平行四边形.由E,F,G,H分别是AB,BC,CD,DA的中点可知EF,FG,GH,EH分别是三角形ABC,BCD,CDA,ABD的中位线,由定理:三角形的中位线平行于三
连接AD,在三角形ABD中,EF是中线所以EF平行AD且EF=AD/2同理在三角形ACD中,HG是中线HG平行AD且HG=AD/2所以EF平行HG且EF=HG所以EFGH是平行四边形
连接AC,BD∵E,H,F,G是中点∴EH是△DAC的中位线∴EH//AC同理GF//AC∴GF//EH同理EF//HG∴四边形EHGF是平行四边形
证明:1)因为:E、F、G、H分别是AB、BC、CD、AD的中点所以:EF//AC//GH所以:EF和GH共面所以:E、F、G、H共面2)因为:EF是△ABC的中位线所以:EF//AC同理:GH//A
答:都是真命题.证明:命题1:如图,∵点F、G分别为CB、CD上的中点,∴FG为△CDB的中位线∴GF//DB,GF=DB/2同理可证得HE为三角形ADB的中位线∴HE//DB,HE=DB/2又∵GF
证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,BC=AD.又∵E、F、G、H分别是平行四边形ABCD的四边中点,∴BE=DG,BF=DH.∴△BEF≌△DGH.
连接ADE、F、G、H分别是线段AB、DB、CD、CA的中点EF//AD,EF=AD/2同理HG//AD,HG=AD/2∴EF//HG,EF=HG∴四边形EFGH是平行四边形
再问:有没有了?再答:连接CQ再答:证明MN是三角形PQC的中位线再问:过程。。采纳你再答:中位线平行于底边再答:😂再问:。。。。拜托了再问:你写了拍下来再答:再答:好久没写字了,很烂
证明:∵平行四边形ABCD∴AB‖CD,AB=CD∵E,G分别边AB,CD的中点∴BE‖DG,BE=DG∵平行四边形BEDG∴BG‖DE同理可证:AF‖CH∴PQMN至少是平行四边形
连接AC.因为E.F.G.H分别是AB,BC,CD,DA的中点所以根据中位线定理得:GH//AC,GH=1/2AC;EF//AC,EF=1/2AC即:EF//GH;且EF=GH所以四边形EFGH是平行
证明:连接BDEH是△ABD的中位线∴EH‖BD,EH=1/2BD同样FG是△BCD的中位线∴FG‖BD,FG=1/2BD所以:EH‖FG,EH=FG根据一组对边平行且相等的四边形是平行四边形得到:四
四边形EFGH是平行四边形理由:连接BD∵E,F,G,H分别是边AB,BC,CD,DA的中点∴EH,FG分别是中位线∴EH∥BD,EH=½BDFG∥BD,FG=½BD∴EH∥FG,
证明:∵ABCD是菱形∴AC⊥BD即∠AOB=90°∵E是AB中点∴OE=1/2AB(直角三角形斜边中线等于斜边一半)同理OF=1/2BC∵AB=BC∴OE=OF同理可得OE=OF=OG=OH∴E,F
证明:连接BD∵E是AB中点,H是AD中点∴EH‖BD∵F是BC的中点,G是CD的中点∴FG‖BD∴EH‖FG
不对吧,连结AC,BD,应该填AC=BD,因为E、F、G、H分别是边AB、BC、CD、DA的中点,所以EF=1/2AC,FG=1/2BD,GH=1/2AC,EH=1/2BD(三角形中位线定理),又因为
连接BD,(在三角形ADB中)因为E、H分别是AB、DA的中点,所以he平行db且等于二分之一db.,(在三角形cdb中)同理,可得cf平行db且等于二分之一db,根据对边平行且相等可得.