如图,E,F是四边形ABCD对角线AC上2点,AE=CF,AB=CD,BA∥DC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:32:53
如图,E,F是四边形ABCD对角线AC上2点,AE=CF,AB=CD,BA∥DC
如图,点E、F、G、H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形

四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以菱形

如图,.在四边形ABCD中,点E、F在对角线AC上,且AD//BC,ED//BF,AF=CE.求证:四边形ABCD是平行

证明:∵AD//BC∴∠DAE=∠BCF∵ED//BF∴∠DEA=∠BFC∵AF=CE∴AE=CF∴△ADE≌△CBF(角边角)∴AD=BC∵AD//BC∴四边形ABCD是平行四边形(有一组对边平行且

如图,点O是四边形ABCD对角线AC的中点,E,F分别为AB,AD的中点,连接OE,OF得四边形AEOF与四边形ABCD

相似,因为OE//BC,OF//BC再问:怎么证出来的(还有对角线相等的两个矩形必相似吗再答:一共四个边,两个边重合,两个边平行,必相似对角线相等是什么意思,是长度相等?再问:是的对角线相等的两个矩形

如图,E、F、G、H分别是空间四边形ABCD四边的中点,

将Ac和BD平移到一点其所成锐角为3o度此题可转化成EH和HG的夹角为30度

如图,四边形ABCD中,AD=BC,DE⊥AC,BF⊥AC,垂足为E,F,AF=CE,求证:四边形ABCD是平行四边形

证明:∵DF=BF∴DF+EF=BE+EF∴DE=BF∵在RT△AED和RT△CFB中AD=CB,DE=BF∴RT△ADE≌RT△CBF(HL)∴∠ADB=∠CBD∴AD//BC∵AD=BC∴四边形A

如图 空间四边形abcd中 e f g分别是

这张图上辅助线已经做出来了啊,由中位线的性质可知,gf//db,ac//ef,平面外的任意一条直线,平行于平面内的任意一条直线就平行于该平面

如图,四边形ABCD中,AD=BC,DE⊥AC,BF⊥AC,垂足分别是E、F,AF=CE.证明:四边形ABCD是平行四边

∵AF=CE∴AE=AC-CE=AC-AF=CF又AD=CB∴Rt△ADE≌Rt△CBF∠DAE=∠BCF∴AD∥BC又AD=BC∴四边形ABCD是平行四边形

已知:如图,四边形ABCD是棱形,F是AB上一点,DF交AC于E已知:如图,四边形ABCD是菱形,F

菱形有一个特点,AC对角线平分角A、角C.角BCD=角DCEBC=CDCE=CE所以△BCE≌△DCE所以角CBE=角CDE又AF//CD所以∠CDE=∠AFE所以∠AFD=∠AFE=∠CBE

如图,已知E,F,G,H分别是四边形ABCD的各点的中点,则四边形EFGH是什么四边形?

如果是矩形,则变成菱形;如果是菱形,则变成长方形;如果是正方形,则还是正方形

如图2,已知四边形ABCD,E,F分别为AD,BC的中点,连接BE、DF,四边形EBFD与四边形ABCD的面积之比是

将BD连接形成三角形ABD和三角形CBD,分别以B、D点向AD、BC作垂线,很明显,因为E、F分别为AD、BC的中点,所以三角形BED:三角形ABD=1:2;同理,三角形BFD:三角形CBD=1:2.

如图 在四边形abcd中 ad平行bc,e,f分别是BA.AB

(1)三角形DAF内角和∠DAF+∠F+∠ADF=∠DAF+2∠F=〖180〗^0;即∠DAF+2∠F=〖180〗^0(2)三角形BCE外角∠CBF=∠E+∠BCE=2∠E;已知∠ADF=∠F;由平形

如图,四边形ABCD中,AD=BC,DE⊥AC,BF⊥AC,垂足分别是E、F,AF=CE.证明:四边形ABCD是平行四边

∵AF=CE∴AE=AC-CE=AC-AF=CF又AD=CB∴Rt△ADE≌Rt△CBF∠DAE=∠BCF∴AD∥BC又AD=BC∴四边形ABCD是平行四边形

如图,在四边形ABCD中AD=CB,DE垂直于E,BF垂直于AC于F且AF=CE,求证四边形ABCD是平行四边形

∵AF=CE∴AE=CF又∵AD=BC∴RtΔDAE≌RtΔBCF∴∠DAE=∠BCF∴AD∥BC(内错角相等)又∵AD=BC故四边形ABCD是平行四边形.如果认为讲解不够清楚,

如图,点E,F,G,H分别是正方形ABCD各边的中点,四边形EFGH是什么四边形?

答:四边形EFGH是一个正方形因为点E、F、G、H分别是正方形ABCD各边的中点所以三角形AEF,BHE,HCG,FDG为全等的等腰直角三角形所以EF=EH=HG=FG,角BHE+角CHG=90度所以

如图E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是( )

联结对角线,根据三角形中位线定理,只要保证对角线互相垂直就可以

如图,已知四边形ABCD中,E、F分别是AD、BC的中点,连接DF、BE.四边形BEDF的面积为6,则四边形ABCD的面

连接BD,因为E是AD中点,所以S△AEB=S△BDE因为F是BC中点,所以S△DFC=S△BDF所以S△AEB+S△DFC=S△BDE+S△BDF=S四边形BEDF=6所以S四边形ABCD=S△AE

如图,四边形ABCD上的中点分别是E.F.G.H,求证:四边形EFGH是平行四边形.

不妨设E,F,G,H分别是AB,BC,CD,DA中点连接AC,根据三角形中位线定理,EF=1/2AC,GH=1/2AC所以EF=GH同理EG=FH所以四边形EFGH是平行四边形(两组对边相等)

如图,已知E,F是四边形ABCD的对角线BD的三等分点,CE,CF的延长线分别平分AB,AD.求证:四边形ABCD是平行

证明:CE、CF的延长线分别交AB、AD于G,H连接AE,AFDF/DE=DH/DA=1/2所以FH平行于AE即CF平行于AEBE/BF=BG/BA=1/2所以EG平行于AF即CE平行于AF所以AEC

如图在四边形ABCD中,顺次连接四边的中点E,F,C,H,构成一个新的四边形.证明四边形E,F,G,H是平行四边形

连接bd,因为f,g为bc,dc中点,所以fg平行且等于二分之一bd,同理可得,eh平行且等于二分之一bd,一组对边平行且相等的四边形是平行四边形,所以efgh是平行四边形

如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应

条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD