如图,d.e.f是三角形abc内的三个点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:07:25
(2/3)*(2/3)*(2/3)=8/27
(两三角形全等的概念为两个三角形除相似外,还要大小相等).根据题意分析图形知,AB∥EF,BC∥DE,AC∥DF; 由
由DE//BC可知,角ADE=角ABC由DF//AC可知,角BDF=角BAC又因为角B=角B所以三角形ADE相似于三角形DBFAAA定理
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
等腰三角形,利用中位线原理可得ef=1/2*AB=adde=1/2*AC=afab=ac得到af=dead=ef所以为菱形
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
DHEF是等腰三角形打错. 应该是 DHEF是等腰梯形.如图,DH=AB/2=DB.DF‖BC ,FE‖AB ∴∠FDH=∠
是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/
对称中心就是DEF=.=作三角形中线并延长一倍就行了.
de、ef分别是三角形abc的一条中位线,所以de=fa,fe=db.所以cdef的周长=ac+bc.
利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH
在平面内,作某一图形,比如ΔABC关于某一点O的中心对称的另外一个图形ΔA′B′C′,方法是:找出图形上的确定点(在同一坐标系中,如果一个图形中的某些点被确定坐标后,这个图形就确定了,这些点就称为确定
雷楚梅再问:什么再问:怎么做
连接CE.S△BEC/S△ABC=BE/AB=3/4(E是AB四等分点,等高三角形面积的比等于对应底边的比),S△BCE=3/4S△ABC;同理又F是BC中点,S△BEF/S△BCE=1/2,S△BE
如图∵d,e,f分别是三角形abc各边的中点∴de,ef,df分别为三角形的三条中位线∴df‖bc,de‖ac,ef‖ab∴df=be=ce,de=af=cf,ef=ad=bd∴△ade≌△bdf≌△
解题思路:梯形解题过程:在△ABC中,D,E,F是三角形ABC各边的中点,AG垂直于BC.垂足为G.求证:四边形DEFG是等腰梯形证明:∵AG⊥BC,F为AC的中点∴FG=1/2AC(直角三角形中斜边
证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC
三角形abc为等边三角形.因为点e与点f分别是ab和ac的中点,所以,ae=be=af=bf,又因为三角形abc为等边三角形,且ad垂直于bc,所以∠a=∠b=∠c=60°连接e,d;f,d.此时,a
证明:因为D、E、F分别是AB、BC、CA的中点∴DE,EF,DF都是△ABC的中位线∴DE/AC=EF/AB=DF/BC=1/2∴△DEF∽△ABC(三边对应成比例的两个三角形相似)再问:请详细些,
∵AD/AB=AE/AC=1/3,∴DE∥BC.∵CE/CA=CF/CB=2/3,∴EF∥AB.∴四边形DEFB是平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴S△ADE/S△ABC