如图,C为线段BD上一动点.分别过点B丶D作
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:54:30
AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:DC
角BCE=角ACD=120所以三角形BCE全等于三角形ACD所以角EBD=角MAD又因为AC=BC角MCB=角ACN=60所以三角形MCB全等于三角形ACN所以CM=CN
相似三角形△ABD相似△MAD(两个角相等)所以BD/AD=AD/MD又M为中点-->BD=2MD代入得出AD*AD=2MD*MD△ADB中AB*AB+AD*AD-2ABADcos60=BD*BD将A
(1)①∵B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10-4=6cm,∵C是线段BD的中
①L=√(1+X²)+√[(8-X)²+5²]②AE为直线时L最小.5/(8-X)=1/X.X=4/3.L=√[(1+5)²+8²]=10③L=√(X
根据勾股定理,CE²=CD²+DE²=x²+2²=x²+4AC²=AB²+BC²=5²+(12-x)
1)AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:
_______________1)√25+(8-x)²+√x²+12)点C在线段AE上时,即点A、C、E共线时,AC+CE的值最小3)再问:第三问嘞?再答:第三问不会
AC+AE=根号[5^+(8-X)^]+根号[1^+X^]两点之间线段最短不懂联系我
这个明显A、C、E在一条直线上,AC+CE值最小嘛再问:过程能不能详细点再答:把A和E连起来,A、C、E三点就构成了一个三角形,根据三角形定理,两边之和大于第三边,所以只要这三个点不在一条直线上,AC
C在AE直线的中轴线上时满足AC=CE.初中数学书中应该是有该定义的.
(1) (2)当C点在线段BD与线段AE的交点处的时候,AC+CE的值最小.(3)如图:过E点作BD的平行线交AB延长线于F点;由(2)可知代数式的最小值就是线段AE的长在Rt△AFE中,∠
1)过C作DA的平行线,交BD于H证明△DCH全等于△ECB即可(2)过C作DA的平行线再由(1)得.可证DF=CF+BE
(1)B'(2t+1,0)(2)∵PQ的解析式为x=t∴PC=4-x,∴PQ:2=(4-x):4∴PQ=0.5(4-x)BC=4-(-1)=5当BP=1/2BC时,点B‘与点C重合,故当BP=1/2B
你假设p动点刚好移动到pm与bc平行,通过相似三角形,这可以算出pm的值,此时pm与dc是垂直的,pm和cm都知道,那pc也可以算出了
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、
△OMN为直接三角形(1)△OMN是等腰三角形,则有ON=2AM=OA-OMMN=根号2*OD=根号2*2/3OA=8根号2/3;(2)设MA的长度为x,则MN^2=MO^2+NO^2=(4-x)^2