如图,c为线段ae上一动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:52:40
如图,c为线段ae上一动点
以知:如图,矩形ABCD中,AB=5,AD=3,E是CD上一动点(不与C、D重合)连接AE,过点B做BF⊥AE,垂足为F

三角形AEB的面积等于AE*BF/2=7.5(矩形面积的一半)①y=15/x(3

如图,过三角形ABC的顶点A作AE垂直BC,垂足为E,点D是射线AE上一动点

连接DB,DC,已知BC=m,AD=n1.若动点D在BC的下方,求四边形ABCD的面积值2.若动点D在BC的下方,1中的结论是否成立,说明理由如图,若动点D在BC的上方,S四边形ABDC=S△ABC-

如图,在△ABC中,AE平分∠BAC(∠C>∠B),F为射线AE上一动点,且FD⊥BC于D,问:当F点运动时总有∠EFD

∠EFD=90-∠DEF=90-∠AEC=90-(∠B+∠BAD)=90-∠B-1/2∠BAC=90-∠B-1/2(180-∠B-∠C)=90-∠B-90+1/2∠B+1/2∠C=1/2(∠C-∠B)

C为线段AE上一动点(不与点A,E重合)在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,

角BCE=角ACD=120度,BC=AC,CD=CE,三角形BCE和ACD全等,角CBE=角CAD,角AOB=180度-角ABO-角BAO=180度-(角ABC+角CBE)-(角BAC-角CAD)=1

(初三数学)如图,已知直线y=√3/3x+3分别交x轴于A,B,点C为线段AB上的一动点.其余如图

(1)30度(用特殊情况解,CD垂直AD时,因为无论C在AB那个地方,度数是不会变的)(2)当OC垂直AB时,面积最小.坐标为(3√3/4,9/4),你可以自己算算再问:第一小题我知道的,第二小题--

如图1,已知等边△aBC,D为AC边上的一动点,Cd=nDA,连接线段BD,M为线段BD上一点,

相似三角形△ABD相似△MAD(两个角相等)所以BD/AD=AD/MD又M为中点-->BD=2MD代入得出AD*AD=2MD*MD△ADB中AB*AB+AD*AD-2ABADcos60=BD*BD将A

如图,在矩形ABCD中,AB=6,BC=10.点E为线段BC上一动点,线段AE与以AD为直径的⊙O相交于点F,连接DF.

应该是求AB=DF吧?否则只有当EC重合才成立AD为直径∠AFD=90∠BAE+∠EAD=∠EAD+ADF=90∴∠BAE=∠ADF∵BE=8AB=6AD=8∴AE=AD=10∴Rt⊿ABE≌Rt⊿D

如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC

嗯能把问题说的明白些吗证明什么?HC平分?平分PQ吗?再问:平分角AHE.再答:在△ACD和△BCE中∵△ABC和△CDE是等边△∴BC=ACCE=CD∠BCA=∠BAC=∠ABC=∠DCE=∠DEC

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与B

∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正

如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0)点P是线段OC上的一动点(点P与点

(1)B'(2t+1,0)(2)∵PQ的解析式为x=t∴PC=4-x,∴PQ:2=(4-x):4∴PQ=0.5(4-x)BC=4-(-1)=5当BP=1/2BC时,点B‘与点C重合,故当BP=1/2B

给图 如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点

(1)设B′横坐标为a,则-1+a2=t,解得a=2t+1.故B′点坐标为(2t+1,0).(2)①如图,当1.5≤t≤4时,重合部分为三角形,∵△CPQ∽△COA,∵PCOC=PQAO,即4-t4=

如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点

易求得AB=√5,BC=5,AC=2√5所以△ABC与△QPC相似,PQ:AB=PC:ACPQ=(4-t)/2s=1/2(4-t)(4-t)/2=(4-t)²/4

如图,已知A(-2,0),B(0,-4),C(1,1),点P为线段OB上一动点(不包括点O),CD⊥CP交x轴于D,当P

1)过C作CM⊥X轴于M,易证角ODC=角PCM,角PCM与角OPC为平行线的内错角,所以相等所以∠CPO=∠CDO(2)过点C作CN⊥Y轴于N,易证△PCN全等于△DCM,所以CP=CD,PN=DM

如图,已知A[-2,0],B[0,-4],C[1,1],点P为线段OB上一动点【不包括点o】,CD垂直CP交X轴于D,当

1)过C作CM⊥X轴于M,易证角ODC=角PCM,角PCM与角OPC为平行线的内错角,所以相等所以∠CPO=∠CDO(2)过点C作CN⊥Y轴于N,易证△PCN全等于△DCM,所以CP=CD,PN=DM

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O

(1)∵△ABC和△CDE都是正三角形∴AC=BCDC=EC∠ACB=∠DCE=60°∠BCD=180°-(∠ACB﹢∠DCE)=60°∠ACD=∠BCE=∠BCD+60°∴△ACD≌△BCE∠DAC

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,

证明:∵△ACD≡△BCE∴AD=BE,1正确∵BA∥CD∴△BAP∽△CDP,BP/PC=BA/CD同理,△BCQ∽△EDQ,BQ/QE=BC/DE∴BP/PC=BQ/QE,△BPQ∽△BCE∴PQ

如图,已知A点坐标为(4,0),B点坐标为(0,8),点M是线段OA上一动点(与不点O,点A重合),点N是线段OB上一动

△OMN为直接三角形(1)△OMN是等腰三角形,则有ON=2AM=OA-OMMN=根号2*OD=根号2*2/3OA=8根号2/3;(2)设MA的长度为x,则MN^2=MO^2+NO^2=(4-x)^2