如图,CE垂直AB于E,DF垂直AB于F,AC ED

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:31:56
如图,CE垂直AB于E,DF垂直AB于F,AC ED
如图,AB为圆O的直径,CD为圆O的弦,过AB分别作AE垂直于CD于E,BF垂直于CD于F.求证:CE=DF

证明:如图所示,过O作OH⊥CD于H,连接CO,DO,∵AE⊥CD,BF⊥CD,OH⊥CD∴AE∥BF∥OH∵AO=BO(等分定理)∴EH=FH∵OC=CD,OH⊥CD∴CH=DH∴CE=EH-CH=

如图,在三角形ABC中,角ACB=90度,CE垂直于AB于点E,AD=AC,AF平分角CAB,并交CE于点F,DF的延长

∵AF平分∠CAB,∴∠CAF=∠DAF.∵AF=AF,AC=AD,∴△ACF≌△ADF.∴∠ACF=∠ADF.∵∠ACF=∠B,∴∠ADF=∠B.∴DF∥BC.(2)∵DF∥BC,BC⊥AC,∴FG

已知 AC 垂直于BC ,AD垂直于BD,AD=BC,CE垂直于AB,DF垂直于AB,垂足分别为E,F,证明CE=DF

证明:∵AC垂直于BC,AD垂直于BD,又∵AD=BC∴在直角三角形△ABC和△BAD中AD=BC,AB=BA∴△ABC≌△BAD(斜边直角边定理)所以∠CAE=∠DBF,AC=BD在直角△CAE和直

3、如图,已知AF和BC是⊙O内两条互相垂直的弦,垂足为D点,CE⊥AB于E交AF于H点,求证:DH=DF

证明:因为AD垂直BC所以角HDC=角FDC=90度因为角HDC+角DCH+角DHC=180度所以角DHC+角DCH=90度因为CE垂直AB于E所以角BEC=90度因为角BEC+角B+角DCH=180

如图,AB是圆O的直径,EF是弦,CE垂直EF,DF垂直EF,E,F为垂足.求证AC=BD

过O点作OM⊥EF,垂足为M.则有ME=MF即点M是EF的中点.∵CE⊥EFDF⊥EFOM⊥EF∴DF‖OM‖CE又点M是EF的中点∴OM是梯形CDEF的中位线则OC=OD∵AB是⊙O的直径∴OA=O

如图,已知AB=CD,AC=BD,且AE垂直BC于E,DF垂直BC于F

AB=CD,AC=BD,得三角形ABC全等三角形BCD,得到角ABC等于角DCB,又因AB等于AC,角AEB等于角DFC,所以三角形ABE全等于三角形DCF,得到BE等于FC,所以BE+EF=FC+E

如图,在矩形ABCD中,E是AB的中点,DF垂直于CE,垂足为F,若AB=10,AD=12,求DF的长

矩形的面积是12*10=120三角形ADE与三角形BCE的面积都是(1/2)*12*5=30,(因为E是AB的中点,等底等高三角形面积相等)用矩形的面积减去这两个三角形的面积之和就是三角形DEC的面积

如图,在△ABC中,CE垂直AB于E,DF⊥AB于F,AC∥FD,CE平分∠ACB,求证∠EDF=∠BDF

显然CE∥FD,所以FDB=ECB因为AC∥DE,所以DEC=ECA又因为FD∥CE,所以FDE=DEC所以FDB=FE,即平分,得证.

如图,已知在平行四边形ABCD中,AD=2AB,E,F在直线AB上,且AE=AB=BF,说明CE垂直于DF

证明:设DF与AB相交于点G∵四边形ABCD是平行四边形∴AB=CD∵AB=BF∴BF=CD∵BF∥CD则△BFG≌△ADG∴BG=CG∵BC=AD=2AB∴BF=BG∴∠F=∠BGF∴∠ABC=2∠

已知:如图,在三角形ABC中,BF=CE,DF垂直AB,DE垂直AC,垂足分别是F,E,DF=DE,

∵∠BFD=∠DEC=90°∴∠DFA=∠DEA=90°AF平方=AD平方-DF平方(勾股定理)AE平方=AD平方-DE平方∴DF=DE又∵BF=CE∴AB=AC再问:非常感谢。

如图所示,已知CE垂直AB于E,DF垂直AB于F,AF=BE,AC=BD.求证:CE=DF

因为AF=BE所以AF-EF=BE-EF所以AE=BF又因为AC=BD且三角形ACE与三角形BDF都是直角三角形根据勾股定理可得CE=DF

已知:如图,AC平分角BAD,CE垂直AB于E,CF垂直AD于F且BE=DF.试猜想CD与CB有怎样

CD=BC在三角形ACF与ACE中,角1=角2,AC=AC,再加两个直角,两个三角形相似所以CF=CE,在三角形CDF与CEB中,又BE=DF,两个直角,两个三角形相似所以CD=BC

如图 三角形ABC中 点D E分别是AB,AC上的点 BD=CE DF垂直于BC于F EG垂直于BC于点G 且DF=EG

我的答案比楼上的简单,答案如下:因为DF=EG,BD=CE,∠BFD=∠CGE=90°,所以△BFD与△CGE为全等三角形,所以∠B=∠C,BD=CE,又因为BC为△BCD和△CBE的公共边,所以△B

如图,AC垂直BC,AD垂直BD,AD=BC,CE垂直AB,DF垂直AB,垂足分别为E、F.求证:CE=DF.

∵AC⊥BC,AD⊥BD∴∠ACB=∠BDA=90°在Rt△ACB和Rt△BDA中AB=BAAD=BC∴Rt△ACB≌Rt△BDA∴∠ABC=∠BAD又∵CE⊥AB,DF⊥AB∴∠AFD=∠BEC=9

如图在三角形abc中cd垂直ab de垂直ac df垂直bc 垂足分别为d.e.f ca.ce.cb.cf相等吗

1CA乘CE与CB乘CF相等根据射影定理CA乘CE=CD^2=CB乘CF2DE垂直AC,DF垂直BCDCEF四点共圆OC*OD=OE*OF

如图,在三角形ABC中,CD垂直于AB,DE垂直于AC,DF垂直于BC,垂足分别为D、E、F.(1)CA乘CE与CB乘C

CA*CE与CB*CF相等!证明:连接EF,∵∠DEC+∠DFC=90+90=180(度),∴EDFC四点共圆,∴∠1=∠3(同弧所对的圆周角相等),又∠1+∠2=∠3+∠4=90度,∴∠2=∠4,而

已知:如图,在ABC中,ACB=45°,AD垂直BC,CE垂直AB,D.E为垂足,CE交AD于F点.求证:DF=DB

因为角FED=角DAB=90角EAF=角DAB(对顶角)所以角EFA=DBA又因为角ACD=45角CDA=90所以CD=AD所以直角三角形CDF、DAB全等所以DF=DB

如图,D是三角形ABC的BC边上的中点,DE垂直于AC,DF垂直于AB,垂足分别为点E,F,若BF=CE,则三角形ABC

证明:∵D是△ABC的边BC的中点∴BD=DC∵DE⊥ACDF⊥AB∴∠DFB=∠DEC又∵BF=CE∴△BDF≡△CDE∴∠FBD=∠DCE∴△ABC为等腰三角形

如图 在正方形ABCD CE垂直于DF 求证:CE=DF

证明:∵CE⊥DF∴∠CDF+∠DFC=90°又∠ECB+∠DFC=90°∴∠CDF=∠ECB又∵正方形ABCD∴CD=CB∠DCF=∠CBE=Rt∠∴△DCF≌△CBE(ASA)∴CE=DF证毕