如图,C,D是以线段AB为直径的圆O上两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:32:19
设AH=x,AO=r,C是以AB为直径的半圆O上一点,CH⊥AB于点H,CH^2=AH*HB=x(2r-x),∴CH=√[x(2r-x)],E为CH中点,∴EH=CH/2=(1/2)√[x(2r-x)
设AB=X则AC=2X/3AD=X/4所以CD=AC-AD=5X/12=10X=24cm
(1)第一问有点无厘头~BD=BE.BC⊥AB.AB≥DE.∠EDB=∠DAB.∠ADB=90°.………………汗这种问题(2)因为∠DCB=∠BCA,∠CDB=∠CBA=90°,所以△DCB∽△BCA
阴影部分的面积为=60π×1360=π6.
(1)BC⊥AB,AD⊥BD,DF=FE,BD=BE,△BDF≌△BEF,△BDF∽△BAD,∠BDF=∠BEF,∠A=∠E,DE∥BC等;(2)∵AB是⊙O的直径,∴∠ADB=90°,又∵∠A=30
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
如图 解题思路:连接OD和DB.先求出以AB为直径的圆的半径为2(周长是2/3 π×3×2=4 π,4 π÷2 π=2)由∠DOB=60°,OD=OB
∵CD切⊙O于C,∴∠DCN=∠DAM,又∠CDN=∠ADM,∴△CDN∽△ADM,∴∠CND=∠AMD,∴∠CMN=∠CNM,∴△CMN是以MN为底边的等腰三角形.再问:∵CD切⊙O于C,∴∠DCN
∵CH⊥AB,DB⊥AB∴CH‖BD∵E是CH中点∴F是BD中点即F为RT△BCD斜边上的中点,那么∠CBF=∠FCB因为∠CBF=∠BAC=ACO∴∠GCO=ACB=90°.即CG是⊙O的切线过F做
证明:(1)∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF.(1分)∴EHBF=AEAF=CEFD.∵HE=EC,∴BF=FD.(3分)(2)连接CB、OC,∵AB是直径,∴∠AC
(1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽△AFB,△ACE∽△ADF,∴EHBF=AEAF=CEFD,∵HE=EC,∴BF=FD(2)证明:连接CB、OC,∵AB是直径,∴∠ACB=90°∵
如图,连接OC、OD、BD.∵C、D是以AB为直径的半圆上的三等分点,∴∠BOD=∠COD=60°.CD=BD.又∵OC=OD,∴△OCD是等边三角形,∴∠CDO=60°∴∠CDO=∠BOD,∴CD∥
再问:为什么S△PCD=S△PBO?再答:
⑴连结OD交BC于G∵D是弧BC的中点∴OD⊥BC∴∠CGD=90°∵AB是直径∴∠ADB=90°=∠E∴∠EDG=360°-∠E-∠ECG-∠CGD=90°∴OD⊥EF∴EF是半圆的切线⑵设⊙O的半
连接CO、DO,如下图所示,∵C,D是以AB为直径的半圆上的三等分点,CD的长为13π,∴∠COD=60°,圆的半周长=πr=3×13π=π,∴r=1,∵△ACD的面积等于△OCD的面积,∴S阴影=S
4+4FG+FG^2=2BG^2=2(FG^2-BF^2),BF=24+4FG+FG^2=2FG2-8,FG^2-4FG-12=0.
(1)证明:连接OC.∵CD切⊙O于点C,∴OC⊥CD.又∵AD⊥CD,∴OC∥AD.∴∠OCA=∠DAC(两直线平行,内错角相等).∵OC=OA(⊙O的半径),∴∠OCA=∠OAC(等边对等角).∴