如图,BP,CP分别是三角形ABC和∠ACD的平分线,求证∠P=21∠A ...

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:43:40
如图,BP,CP分别是三角形ABC和∠ACD的平分线,求证∠P=21∠A ...
如图:已知 BP,CP 分别是△ABC 的∠ABC,∠ACB 的外角角平分线,BP,CP 相交 于 P,试探索∠BPC

因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

如图,己知:点P是三角形ABC的BC边的垂直平分线上一点,且角A=2角PBC,BP丶CP的延长线分别交AC,AB于点D丶

证明:作BF⊥CE于F点,CM⊥BD于M点则∠PFB=∠PMC=90°.∵PG是BC的垂直平分线,∴PB=PC.在△PBF和△PCM中,∠PFB=∠PMC∠BPF=∠CPMPB=PC,∴△PBF≌△P

如图:已知BP、CP分别是△ABC的∠ACB的外角角平分线,BP、CP相交于O,试探所∠BPC与∠A之间的数量关系.

∵∠1=0.5∠DBC=0.5(180°-∠ABC),∠2=0.5∠ECB=0.5(180°-∠ACB)∴∠BPC=180°-(∠1+∠2)=180°-【0.5(180°-∠ABC)+0.5(180°

如图,在三角形ABC中,BD、CD是内角开分线,BP、CP分别是角ABC和角ACB的外角平分线,

根据内角平分线可推得∠BDC=90°+1/2∠A当∠A=30°时∠BDC=90°+15°=105°根据内外角平分线可推得∠BDC=90°+1/2∠A∠BPC=90°-1/2∠A两式相加得∠BDC+∠B

如图,在三角形ABC中,BP、CP分别是∠ABC、∠ACB的外角平分线.求证:点P必在∠A的平分线上.

证明:如图,过点P作PF⊥AD,PG⊥BC,PH⊥AE,∵BP、CP分别是∠ABC、∠ACB的外角平分线,∴PF=PG,PG=PH,∴PF=PG=PH,∴点P必在∠A的平分线上(到角的两边距离相等的点

如图,BP,CP分别是三角形ABC和∠ACD的平分线,求证∠P=2\1∠A

过C 做 ∠ACB的角分线 把下面红线带入上面的红线

如图BP,CP分别是三角形ABC的平分线且相交于点P,PE垂直于AB于E,PF垂直于AC于F(1)求点P在角A的平分线上

(1)分别过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(2)由于角A=50,则角B

已知:如图,BP,CP分别是三角形ABC的外角

过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC

如图,在三角形ABC中 BD CD 是内角平分线   BP,CP 分别是∠ABC和∠ACB的外角平分线.(1)喏∠A=3

(1)∠A=30°则:∠ABC+∠ACB=150°因为:BD CD 是内角平分线所以:∠1+∠2=75°所以:∠BDC=180°-75°=105°同理:∠EBC+∠FCB=(180°-∠ABC)+(1

如图,三角形ABC.BP,CP是三角形ABC的外角平分线,求角A与角P的关系

相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。

如图,已知三角形ABC中,BP,CP分别平分角ABC和角ACD,证明,角P=二分之一角A

在BC延长线上取点E∵∠A+∠ABC+∠ACB=180∴∠ABC+∠ACB=180-∠A∵∠ACE=180-∠ACB,CP平分∠ACE∴∠PCE=∠ACE/2=(180-∠ACB)/2=90-∠ACB

如图,在三角形ABC中,BD、CD分别是角ABC、角ACB的平分线,BP、CP分别是角EBC、角FC

E,F是什么东东?再问:再答:俩问的结果都是180°哈以为∠PBD=∠PBC+∠DBC=1/2∠EBC+1/2∠ABC=1/2(∠EBC+∠ABC)=90°同理∠PCD=∠PBC+∠DBC=90°所以

如图,△ABC,CP、BP分别平分三角形的外角∠ECB,∠DBC,若∠A=50°,那么∠P等于______°.

∵∠BCP=12∠BCE=12(∠A+∠CBA),∠CBP=12∠CBD=12(∠A+∠ACB);(角平分线的定义及三角形的一个外角等于与它不相邻的两个内角的和)∴∠BCP+∠CBP=∠A+12(∠C

如图,CP、BP分别是三角形ABC的外角平分线,那么AP是否是角CAB的平分线呢?若是,请说明理由.

证明:需要做辅助线,三条垂线,第一,过P向AC作垂线垂足为D,过P向AB坐垂线垂足为E,过P向BC做垂线垂足为F.之后根据外角平分线,角ECP和角BCP相等,加上直角和公共边,便可说明三角形ECP和F

如图:已知BP、CP分别是△ABC的外角角平分线,BP、CP相交于点P,试探索∠BPC与∠A之间的数量关系.

∠BPC=90-∠A/2∵∠DBC=180-∠ABC,BP平分∠CBD∴∠PBC=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2∵∠BCE=180-∠ACB,CP平分∠BCE∴∠PCB=∠