如图,BD,BE分别是△ABC的两条高求证:点E,B,C,D在同一个圆上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:43:13
如图,BD,BE分别是△ABC的两条高求证:点E,B,C,D在同一个圆上
如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F

∵△ABC是等边三角形∴AB=BC,∠ABD=∠BCE=60°∵BD=CE∴⊿ABD≌⊿BCE﹙SAS﹚再问:是证这两个三角形相似不是证全等再答:全等一定相似

如图,三角形ABC中,点D是AC上一点,BE平行AC,BE、AD、AE分别交BD、BC于点F、G

1、显然没有!可以证明的;图中所有可能的三角形,都没有可以固定的的60度角;因为D点和E点是可以随便改变的,而且主三角形ABC也是可以变化的,所以在这种条件下不可能可能得到一个全等三角形;而只能有相似

已知:如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB

证明:∵BE、CF分别是AC、AB两条边上的高,∴∠ABD+∠BAC=90°,∠GCA+∠BAC=90°,∴∠GCA=∠ABD,在△GCA和△ABD中,GC=AB∠GCA=∠ABDCA=BD,∴△GC

如图,在△ABC中,已知∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,请说明BD=CE

证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE

已知:如图BE、BD是△ABC中∠ABC的内、外角平分线,AD⊥BD于点D,AE⊥BE于点E,

证明:因为BE,BD分别平分∠ABC和∠ABM  (∠ABM是∠ABC的外角),所以:∠DBE=90°而∠D=∠AEB=90°所以:四边形DBEA是矩形.所以:DE=AB而:∠AB

如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F

(1)因为等边三角形ABC所以AB=BC,∠ABD=∠BCE因为BD=CE,∠ABD=∠BCE,AB=BC所以△ABD≌△BCE(2)因为△ABD≌△BCE所以∠BAD=∠CBE因为∠BAC=∠CBA

如图,C是线段BD上一点,分别以BC、CD为边作等边三角形ABC和CDE,连接AD、BE.求证:AD=BE.

证明:∵△ABC和△DEC是等边三角形,∴AC=BC.CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中BC=AC∠BCE=

如图,C是线段BD上一点,分别以BC、CD为边作等边三角形ABC和CDE,连接AD、BE.求证:AD=BE.

证明:∵△ABC和△DEC是等边三角形,∴AC=BC.CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中BC=AC\x09∠

已知,如图,BE,CD分别是△ABC的高线,且BD=CE,求证;△ABC为等腰三角形

因为CD、BE分别是等腰三角形ABC的高线所以CD⊥AB,BE⊥AC所以△ADC和△AEB是直角三角形而∠DAC=∠EAB(公共角)AB=AC(已知)所以RT△ABE全等于RT△ACD(AAS)所以A

如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.

(1)证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵BD=CE,∴△ABD≌△BCE.(2)△BDF∽△ADB.理由如下:∵△ABD≌△BCE(已证).∴∠

如图,已知在△ABC中,BD,CE分别是AC,AB边上的高,且BE=CD,求证:AD=AE

解题思路:本题考查直角三角形的全等判定和等腰三角形的相关知识。解题过程:

初二全等三角形难题如图  在△ABC中,BE,CF分别是ACAB两边上的高,在BE上截取BD=AC,

证明:(1)因为BE,CF分别是ACAB两边上的高,那么有∠BAC+∠ABD=90°=∠BAC+∠GCA又有BD=AC,CG=AB所以有△ACG≌△DBA所以有AD=AG(2)由于△ACG≌△DBA,

如图 在三角形ABC中 BE CD分别是角ABC 角BCA的平分线 且BE=CD BD=CE 三角形ABE与三角形ACD

因为BE=CDBD=CEBC=BC所以△BCD与△CBE全等所以∠ABC=∠ACB∠CDB=∠BEC所以∠ADC=∠AEB因为BECD分别是角ABC角BCA的平分线所以∠ABE=∠EBC∠ACD=∠D

如图,已知BD,BE分别是∠ABC与它的邻补角∠ABP的平分线,AE⊥BE于E,AD⊥BD于D,且G,F分别是AD,AE

先在图上做辅助线连接DE因为BD,BE分别是∠ABC与它的邻补角∠ABP的平分线,所以∠EBD=(∠ABC+∠ABP)/2=90°又因为AE⊥BE,AD⊥BD所以四边形AEBD是矩形所以AB=DE因为

如图,已知BD,BE分别是∠ABC与它的邻补角∠ABP的平行线,AE⊥BE于E,AD⊥BD于D,且G,F分别是AD,AE

1、∵BD,BE分别是∠ABC与∠ABP的平分线∴∠ABE=½∠ABP∠ABD=½∠ABC∵∠ABP+∠ABC=180°∴∠ABE+∠ABD=90°∴∠DBE=90°∵AE⊥BE,

如图,在△ABC中,BE,CD分别是∠ABC和∠BCA的平分线,且BE=CD,BD=CE.△ABE与△ACD全等吗?为什

全等,因为BE=CD,BD=CE所以△DBC全等于△EBC因为BE,CD分别是∠ABC和∠BCA的平分线所以∠ABE等于∠ACD∠BAC为公共角,∠ADC又等于∠AEB,BE=CD所以.△ABE与△A

如图,已知BD,BE分别是∠ABC与它的邻角∠ABP的平分线,AE⊥BE于E,AD⊥BD于D,且G,F分别是AD,AE的

分析:要证四边形AEBD是矩形,已经知道有两个角是直角,只需再证∠EBD=90°即可.证明:因为BD、BE分别是∠ABC、∠ABP的角平分线,所以∠ABD+∠ABE=(∠ABC+∠ABP)=90°,所

已知:如图 △ABC是等边三角形 点D、E分别在边BC、AC上 且BD=CE AD与BE相交于点F

证明:(1)∵AB=BC,∠ABD=∠C=60°,BD=CE∴△ABD≌△BCE(2)由(1)△ABD≌△BCE得∠BAD=∠CBE∠FAE=60°-∠BAD=60°-∠CBE=∠ABE∠AFE=∠A

如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,∠EBO=∠DCO且BE=CD.求证:△ABC是等腰

证明:在△EBO和△DCO中,∠EBO=∠DCO∠EOB=∠DOCBE=CD,∴△EBO≌△DCO(AAS),∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∴∠ABC

如图,△ABC中,BD、CE分别是AC、AB边上的高,如果BD=CE,那么△ABC是等腰三角形,为什么?

证明:∵BD、CE是△ABC的高,∴△BCD与△CBE是直角三角形,在Rt△BCD与Rt△CBE中,BC=CBBD=CE,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB,∴AB=AC,即△