如图,BD,BE分别是△ABC的两条高求证:点E,B,C,D在同一个圆上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:43:13
∵△ABC是等边三角形∴AB=BC,∠ABD=∠BCE=60°∵BD=CE∴⊿ABD≌⊿BCE﹙SAS﹚再问:是证这两个三角形相似不是证全等再答:全等一定相似
1、显然没有!可以证明的;图中所有可能的三角形,都没有可以固定的的60度角;因为D点和E点是可以随便改变的,而且主三角形ABC也是可以变化的,所以在这种条件下不可能可能得到一个全等三角形;而只能有相似
证明:∵BE、CF分别是AC、AB两条边上的高,∴∠ABD+∠BAC=90°,∠GCA+∠BAC=90°,∴∠GCA=∠ABD,在△GCA和△ABD中,GC=AB∠GCA=∠ABDCA=BD,∴△GC
证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE
证明:因为BE,BD分别平分∠ABC和∠ABM (∠ABM是∠ABC的外角),所以:∠DBE=90°而∠D=∠AEB=90°所以:四边形DBEA是矩形.所以:DE=AB而:∠AB
(1)因为等边三角形ABC所以AB=BC,∠ABD=∠BCE因为BD=CE,∠ABD=∠BCE,AB=BC所以△ABD≌△BCE(2)因为△ABD≌△BCE所以∠BAD=∠CBE因为∠BAC=∠CBA
证明:∵△ABC和△DEC是等边三角形,∴AC=BC.CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中BC=AC∠BCE=
证明:∵△ABC和△DEC是等边三角形,∴AC=BC.CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中BC=AC\x09∠
因为CD、BE分别是等腰三角形ABC的高线所以CD⊥AB,BE⊥AC所以△ADC和△AEB是直角三角形而∠DAC=∠EAB(公共角)AB=AC(已知)所以RT△ABE全等于RT△ACD(AAS)所以A
(1)证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠BAC=60°,∵BD=CE,∴△ABD≌△BCE.(2)△BDF∽△ADB.理由如下:∵△ABD≌△BCE(已证).∴∠
解题思路:本题考查直角三角形的全等判定和等腰三角形的相关知识。解题过程:
证明:(1)因为BE,CF分别是ACAB两边上的高,那么有∠BAC+∠ABD=90°=∠BAC+∠GCA又有BD=AC,CG=AB所以有△ACG≌△DBA所以有AD=AG(2)由于△ACG≌△DBA,
因为BE=CDBD=CEBC=BC所以△BCD与△CBE全等所以∠ABC=∠ACB∠CDB=∠BEC所以∠ADC=∠AEB因为BECD分别是角ABC角BCA的平分线所以∠ABE=∠EBC∠ACD=∠D
先在图上做辅助线连接DE因为BD,BE分别是∠ABC与它的邻补角∠ABP的平分线,所以∠EBD=(∠ABC+∠ABP)/2=90°又因为AE⊥BE,AD⊥BD所以四边形AEBD是矩形所以AB=DE因为
1、∵BD,BE分别是∠ABC与∠ABP的平分线∴∠ABE=½∠ABP∠ABD=½∠ABC∵∠ABP+∠ABC=180°∴∠ABE+∠ABD=90°∴∠DBE=90°∵AE⊥BE,
全等,因为BE=CD,BD=CE所以△DBC全等于△EBC因为BE,CD分别是∠ABC和∠BCA的平分线所以∠ABE等于∠ACD∠BAC为公共角,∠ADC又等于∠AEB,BE=CD所以.△ABE与△A
分析:要证四边形AEBD是矩形,已经知道有两个角是直角,只需再证∠EBD=90°即可.证明:因为BD、BE分别是∠ABC、∠ABP的角平分线,所以∠ABD+∠ABE=(∠ABC+∠ABP)=90°,所
证明:(1)∵AB=BC,∠ABD=∠C=60°,BD=CE∴△ABD≌△BCE(2)由(1)△ABD≌△BCE得∠BAD=∠CBE∠FAE=60°-∠BAD=60°-∠CBE=∠ABE∠AFE=∠A
证明:在△EBO和△DCO中,∠EBO=∠DCO∠EOB=∠DOCBE=CD,∴△EBO≌△DCO(AAS),∴OB=OC,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∴∠ABC
证明:∵BD、CE是△ABC的高,∴△BCD与△CBE是直角三角形,在Rt△BCD与Rt△CBE中,BC=CBBD=CE,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB,∴AB=AC,即△