如图,bc是圆o得直径,A是弦BD延长线上一点,AC垂直BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:23:07
如图,bc是圆o得直径,A是弦BD延长线上一点,AC垂直BC
如图,AB是圆O的直径,BC是圆O的弦,OD⊥CB于E,交胡BC于点D,连接CD,设角CDB=a,角ABC=b.试找出a

连接AD∠CDB=∠CDA+∠ADB直径所对的圆周角为90°所以∠ADB=90°同弧所对圆周角相等∠CDB=∠ABC∠CDB=90°+∠ABC即a=90°+

如图,BC是圆O的直径,A是弦BD延长线一点,切线DE平分AC于E,试说明AC是圆O的切线

连DO,DCBC为直径,CD垂直ADE为斜边中点,DE=CE,∠ECD=∠CDE(1)OD=OC,∠ODC=∠OCD(2)DE为切线,∠ODE=∠ODC+∠CDE=90度(1),(2)代换,∠OCD+

如图,点A,B,D,E在圆O弦AE,BD的延长线相交于点C,若AB是圆O的直径,D是BC的中点.

(1)AB=AC.证法一:连接AD,则AD⊥BC.∵AD为公共边,BD=DC,∴Rt△ABD≌Rt△ACD.∴AB=AC.证法二:连接AD,则AD⊥BC.又BD=DC,∴AD是线段BD的中垂线.∴AB

如图,AB是圆心O的直径,BC是弦,OD⊥BC于E,交BC于D

OD平分BC即BE=CE弧CD=弧BD三角形ABC为直角三角形OE平分弧BC

如图,BE是圆O的直径,BC切圆O于B ,弦ED//OC,连接CD并延长交BE延长线于A《1》CD是圆O切线,2若AD是

连OD,OD=OE,所以角BED=角ODE,因DE平行于OC,所以角BOC=角BED,角ODE=角COD所以角BOC=角COD,又OD=OB,公共边OC,所以三角形OBC全等于OCD,剩下的对应角相等

如图,AB是圆O的直径,BC是弦,D为弧AC中点,求证OD平行BC

先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A

如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,AB是圆O的直径,弦AE⊥CD.求证弧BC=弧ED

证明:连接BD、AD∵AB为直径∴∠ADB为直角又∵AE⊥CD∴∠DAE=∠BDC∴弧BC=弧ED

如图AB是圆O的直径 BC是圆O的切线 切点为B OC平行于弦AD

很好做的~因为OC‖AD所以∠COB=∠A,∠COD=∠ODA因为OA=OD所以∠A=∠ODA所以∠COB=∠COD于是△COD≌△COB所以∠COD=∠COB=90°,所以DC为圆O的切线

如图,BC是圆O的直径,OA是圆O的半径弦BE=OA,求证:弧AC=弧AE

根据已知条件,不能证明;因为A在弧EC滑动时,不一定保证弧AC=弧AE;假如增加一条已知条件:AO平行与EB,(表示为AO//EB)连接OE,BE=OA=OE=OB,三角形EOB为等边三角形,∠EOB

如图 AB是圆o的直径,AC为弦,OD‖BC,交AC于点D,

OD‖BC  →△AOD∽△ABC  →OD/BC=AO/AB=1:2       &nb

如图,已知ab是圆o直径,bc垂直于ab,

连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD2、在△COB和△COD中OD=OBCO=CO

如图,AB是圆O的直径,BC是弦,PA切圆O于A.OP平行于BC,求证:PC是圆O的切线

证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C

如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,求角BOD的度数

120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度

如图,AB是圆O的直径,BC是弦,OD⊥BC于点E,交弧BC于点D

取BE的中点F,连接OF.OE,OB为半径,所以OF垂直于EB,设半径为RE是弧BC的中点,OE交弦BC于点D,所以DE垂直于BD,DB=BC/2=4,根据勾股定理,得出BE=2根号5,OF=根号(R

如图,BC是圆O的直径,AD垂直BC于D,点A是弧BF的中点,BF与AD交与E求证:

(1)证明:延长AD于圆交于点GBC为直径,且BC⊥AD,根据垂径定理,弧AB=弧BGA为弧BF中点,所以弧AF=弧AB=弧BG∠BAG和∠ABF分别为弧BG、弧AF所对圆周角因此∠BAG=∠ABF,