如图,AD为△ABC的边BC上的中位线,E为AD上的点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:26:44
DE//AC,即DE//AF,DF//AB,即DF//AE.根据两组对边分别平行的四边形是平行四边形的判定定理,所以四边形AEDF为平行四边形.根据平行四边形性质定理之一“平行四边形两条对角线互相平分
三角形为:ABDADCABC内角为:角ABD角BDA角DAB边为:ABADBD
1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在
因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD
1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A
三角形两边之和大于第三边所以三角形ABD中AB+BD>AD三角形ACD中AC+CD>AD相加AB+BD+CD+AC>AD+AD所以AC+BC+AB>2AD
∠DEF=30º所以∠DCF=30º所以CF垂直于AB所以ED垂直于ABADE为等边所以AB平分ED所以EF=BD=DC.所以D是BC中点
ABD的底是BD,高是AFACD的底是CD,高也是AF因为BD=CD,等底等高三角形面积当然相等.
◆本题的结论明显错误,正确结论为:AC²:BC²=AD:DB.证明:∵∠ADC=∠ACB=90º;∠A=∠A.∴⊿ADC∽⊿ACB,AC/AB=AD/AC,则AC
设∠CAD=a,则:∠DAE=π/4-a,∠EDF=a,EF/ED=sina,ED/AD=tan(π/4-a),EF/AD=EF/ED*ED/AD=sina*tan(π/4-a)=1/2v10,tan
证明:(1)由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,在△ACD和△CBF中,AC=BC∠DCA=∠FBCCD=BF,所以△ACD≌△CBF(SAS);(2)当D在线段BC上的中点时,四
(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM-DM=BM-MF,即BF=CD.(2)连接BE,则∠AB
证明:连接ED、FD,△ABD与△AED为相似三角形,△ADC与△ADF为相似三角形则有AD/AC=AF/AD,推出AD²=AC.AF,AD/AB=AE/AD,推出AD²=AB.A
1、BM=BD,∠A=60°,故△BMD是等边三角形,得出:∠AMD=120°,AM=DC.2、∠ACB=60°,CE是外角平分线,得出:∠DCE=120°3、∠ADM+CDE=60°,∠CED+∠C
先证明△ABD≌△BCE因为AB=BC∠ABC=∠ACB=60°BD=CE所以AD=BE又等边△ADF所以AD=DF所以BE=DF因为△ABD≌△BCE所以∠BAD=∠CBE∠ADB=∠BEC∠C=∠
△DEF与△ABC相似∵E、F分别为AB、AC上的中点∴EF‖BC∴△AEF∽△ABC设EF与AD交于O则AO=DO∵AD⊥BC∴AD⊥EF∴AE=DE,AF=DF∵EF=EF∴△AEF≌△DEF∴,
证明:连结BE.因为三角形ABC和三角形AED都是等边三角形,所以AB=AC,AE=AD,角EAD=角BAC=60度,角ACB=60度,角ABC=60度,所以角EAB=角DAC,所以三角形EAB全等于
∵四边形ABDE是平行四边形∴AB∥DE,AB=DE∴∠B=∠EDC(两直线平行,同位角相等)又AB=AC∴∠B=∠ACB(等边对等角),AC=DE=AB∴∠EDC=∠ACD∴△ADC≌△ECD(SA
1)、如图(1),当D点运动到BC的中点时,X=90°;(2)、如图(2),当D点运动到C点(与C点重合)时,X=30°,这时X的最小值;(3)、如图(3),当D点向C点慢慢运动时,越接近C点,∠1由
因为AB=AC所以∠B=∠C,又BD=EC所以△ABD全等于△ACE所以AD=AE