如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC,求证AB=BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:50:09
如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC,求证AB=BC
如图,已知平行四边形ABCD中,对角线AC=6,BD=8,边AB=5,求证:平行四边形ABCD是菱形

设对角线交点为O点∵两条对角线互相平分,∴OA=OC=3,OB=OD=4,又∵AB=5所以AB²=OA²+OB²∴△OAB是直角三角形.同理可得△OAD是Rt△,且△OA

如图,平行四边形ABCD中,对角线AC为斜边作Rt△ACE,又∠BED=90°,那么平行四边形ABCD是矩形吗?说说你的

是,设AC交BD于点O,连接OE,因为AE⊥EC.所以AC=2EO,若BE⊥DE则BD=2OE,所以AC=BD又因为ABCD是平行四边形,所以ABCD是矩形

如图,已知在平行四边形ABCD中,以AC为斜边作Rt△AEC,∠BED=90°.求证平行四边形ABCD是矩形.

设AC和BD相交于点O,连接OE.OE是Rt△ACE斜边上的中线,可得:AC=2OE;OE是Rt△BDE斜边上的中线,可得:BD=2OE;所以,AC=BD.因为,ABCD是平行四边形,AC=BD,所以

如图,在平行四边形ABCD中,AC=CD

你已经证明了△ADF∽△ACE,也就是角EAC+角CAF=角FAD+角CAF,即角EAF=角CAD,而且AE/AF=AC/AD,所以三角形EAF相似于三角形CAD,因此EF/CD=AE/AC,由CD=

如图,EF是平行四边形ABCD对角线AC上的两点,且BE平行于DF

因为BE平行于DF,所以角AEB等于角DFC,有因为角BAE等于角DCF,所以角ABE等于角CDF,又因为AB等于CD,所以全等.

如图,E,F,是平行四边形ABCD的对角线AC上的点,且CE

解题思路:题没有写完整,请在下面补充解题过程:.最终答案:略

如图,AC',BD',CA',DB'分别是平行四边形ABCD四个内角的平分线.请找出图中除ABCD外所有的平行四边形(不

四边形AC'CA',BD'DB'以及四条角平分线围成的四边形为平行四边形,一共3个

如图,平行四边形ABCD中,对角线AC,BD相交于点O,添加一个条件,能使平行四边形ABCD成为菱形,你添加的条件是

【第一种条件:AC⊥BD】∵平行四边形对角线互相平分∴AO=CO∵AC⊥BD∴AB=BC(垂直平分线上的点到线段两端距离相等)∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)【第二种条件:AC平分

如图,平行四边形ABCD中,AC平分∠BAD.求证:四边形ABCD是菱形.

证明:∵在平行四边形ABCD中,AB∥CD,∴∠DCA=∠BAC,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形.

如图,平行四边形ABCD对角线AC、BD交于点O,AB=5,AC=8,BD=6,求证:平行四边形ABCD是菱形

∵四边形ABCD是平行四边形AC=6,BD=8∴AO=3,BO=4又∵AB=5∴3²+4²=5²∴AO²+BO²=AB²∴△AOB是Rt△∴

如图;已知AC是平行四边形ABCD的一条对角线,

先证明三角形ADN与三角形CBM全等得到DN=BM又有BM⊥AC,DN⊥AC所以DN//BMDN与BM平行且相等,所以是平行四边形

如图,在平行四边形abcd中,对角线ac,bd分别为直角三角形ace和直角三角形bde的斜边 求证:平行四边形ABCD是

设AC交BD于O,则AO=CO,BO=DO.连结OE,则AC=2OE=BD(直角三角形斜边的中线等于斜边的一半),所以AC=BD所以ABCD为矩形(对角线相等且互相平分)

如图,平行四边形ABCD中,对角线AC,BD交于O,E是AO的中点

∵af∥bd∴角afb=obf因为e是ao中点所以ae=oe再加对顶角可知三角形boe全等fae所以af=bo因为平行四边形abcd所以bo=do所以od=af(2)ab=ad∵平行四边形abcdad

已知,如图,E,F是平行四边形ABCD对角线AC上的两点,AE=CF,如果将条件中的平行四边形ABCD改成菱形ABCD

应该是可能的,不过没有图怎么做AB=AD,角BAE=角DAE,AE=AE,SAS可证:BE=DE同理BF=DFAB=CB,角BAE=角BCF,AE=CF SAS 可证BE=BF,你懂得了再问:�ܿ�һ

如图,在平行四边形ABCD中,以AC为斜边作Rt△ACE,且∠BED是直角.求证:平行四边形ABCD是矩形.

证明:连接EO,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=12BD,在Rt△AEC中,∵O为AC中点,∴EO=12AC,∴AC=BD,又∵四边形

已知,如图,平行四边形ABCD中,AC是对角线,AE=CF,AM=CN,求证:MFNE是平行四边形.

证明:如图因为四边形ANCD是平行四边形,所以:∠BAC=∠DCA.即:∠1=∠2那么,在△AEM和△CFN中:AM=CN(已知)∠1=∠2AE=CF(已知)所以:△AEM≌△CFN(SAS)所以,M

如图,已知AC是平行四边形ABCD的对角线,DE⊥AC,BF⊥AC,求证四边形DEBF是平行四边形

∵ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAF=∠DCE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,BF∥DE(垂直于同一条直线的两直线平行),∴ΔABF≌ΔCDE(AAS

如图,在平行四边形ABCD中,ac是对角线,则平行四边形ABCD的面积是_____

设DC中点为O∵ABCD是平行四边形∴AO=OC,BO=DO,AD=BC∵BO=1.5,BC=4∴BD=3,AD=4∵AB=5根据勾股定理逆定理可得∠ADB=90°∴S平行四边形ABCD=AD*BD=

如图,点O是平行四边形ABCD的对角线AC与BD的交点,四边形OCDE是平行四边形.

证明:连接AE,如图.∵四边形OCDE是平行四边形,∴DE∥OC,DE=OC∵O是平行四边形ABCD的对角线AC与BD的交点,∴AO=OC.∴DE∥OA,DE=OA∴四边形ODEA是平行四边形,∴OE