如图,ac=bd,角a=角b,且de∥cf,试说明该图是中心对称图形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:37:37
如图,ac=bd,角a=角b,且de∥cf,试说明该图是中心对称图形
如图,角A=角D=90°,AC=BD.

建议连接BC看一下那么你就看出来了对ABC和DCB全等所以AB=DC为什么我就不说了角有90的加两边就好看下一题把同理的若那个角不是90的就没有了那个定理```所以不行

如图 AB=AC BD平分角ABC AD+BD=BC 求角A

在BC上取一点E,使BE=AB.所以△ABD≌△BDEAD=DE,∠BED=∠A再在EC上取一点F,使DF=DE.DF=AD在等腰三角形DEF中,∠DFE=∠DEF=180°-∠A=2∠C所以,∠FD

如图,已知点A、B、C、D在同一直线上,AM=CN ,BM==DN,角M=角N,求证:AC=BD

第一个问题,因为边角边,显然有三角形AMB全等于三角形CND,所以有AB=CD,同时加上BC,得AC=BD.第二个问题,9.938乘以10的9次方.

如图,已知:AB=AC,角B=角C,说明BD=CE

∵AB=AC(已知),角B=角C(已知),角A=角A(公共角)∴△ABD≌△ACE(ASA)∴BD=CE

如图,已知角A=90度,AC=20,AB=10,延长AB至点D,使AC+AB=CD+BD,求BD长

设BD=x,则CD=AC+AB-BD=20+10-x=30-x,在直角三角形ACD中,由勾股定理,得,AC^2+AD^2=CD^2,20^2+(10+X)^2=(30-x)^2解得:x=5

如图在三角形ABC中,AB=AC,BD是角B的平分线,在三角形BCD中,BD=BC,求角A

设<ACB=x由AB=AC<ABC=x由BD平分<ABC得<DBC=x/2由BD=BC<BDC=x又<ACB+<DBC+<BDC=180得到x=72<A=180-2x=36

如图,已知ab=cd,ac=bd,求证:角a=角d

证明:连接BC∵AB=CD/AC=BD,BC=BC∴△ABC≌△DBC(SSS)∴∠A=∠D再问:详细一点再答:拜托!这样还不详细?你想怎么样再问:连接BC什么意思再问:连接BC什么意思再问:连接BC

如图,已知点A.B.C.D在同一直线上,AM=CN,BM=DN,角M=角N,试说明AC=BD

∵在△AMB,△CND中AM=CN(已知)∠M=∠N(已知) BM=DN(已知)∴△MBA≌△CND(SAS)∴AB=CD(全等三角形对应边相等)∴AB-CB=CD-CB(等式性质)即AC=BD

如图,A、E、F、B四点在同一直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD,试说明AC∥BD

在RT△ACE和RT△BDF中,AE=BF,∠D=∠C=90º(HL)∴RT△ACE≌RT△BDF∵AC=BD∴∠EAC=∠FBD(同位角相等)∴AC∥BD

如图,已知AD=BC,AC=BD,求证∠A=∠B

连接AB∵AD=BC,AC=BD,AB=BA∴△ABC≌△BAD∴∠DAB=∠CBA,∠CAB=∠DBA∴∠DAB-∠CAB=∠CBA-∠DBA即∠A=∠B

如图,若角DAB与角ABC互余,且DC=a,AB=b,求AC²+BD² 的值

分别延长BC与AD相交于E点,因为角DAB与角ABC互余,所以角AEB是直角90度根据勾股定理:BD^2=BE^2+DE^2AC^2=AE^2+CE^2之后两个式子相加,DE^2+CE^2=a^2BE

如图,A、E、F、B四点在同一直线上,AC⊥CE,BD⊥DF,AE=BF,AC=BD,试说明CF=DE

因为AE=BF,AC=BDACE=BDF=90°所以ACE和BDF全等所以角CAE=DBF因为AE=BF所以AE+FE=BF+FE即AF=BE在三角形CAF和DBE中根据SASCA=BDCAF=DBE

如图,三角形ABC中,角A等于90°,AB=AC,角ABC的平分线BD交AC于点D,CE垂直BD

求证:ce=2分之1bd?再答:证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC

已知:如图 在三角形ABC中,角A=90,AB=AC,BD平分角ABC,CE垂直于BD交BD延长线

延长BA,CE交于点F,∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,∴∠ABD=∠ACF,又AB=AC.∴Rt△ABD≌Rt△ACF.∴BD=CF,∵∠BDA是△BDC的外角,∴∠BDA

已知如图,三角形ABC中AB=AC角A等于90°,BD平分角ABC,CE垂直BD与E,求证,BD=2CE

证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC(ASA)∴EF=EC∴CF=2