如图,AC=BC,∠ACB=∠BCE,∠E=100°,求证:ΔACD≌ΔCBE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:27:23
∵ACAE∴∠AEC=∠ACE∴∠ACE=90°-1/2∠A同理∠BCD=90°-1/2∠B∴∠ACE+∠BCD=90°-1/2∠A+90°-1/2∠B=180-45=135°∴∠DCE=135-90
由题目可以知道△ABC为等腰直角三角形﹐那么AC/AB=√2/2﹐AC=√2/2AB在三角形ACD中﹐CD/AC=tan∠CAD=tanπ/8tanπ/4=(2tanπ/8)/1-(tanπ/8)^2
4再问:要详细一点的、可以么、再答:MN=BN+AM-AB=BC+AC-AB=5+12-13=4
你这张图……既然还有辅助点……过AB作BE=BC交AB于E,则BE=BC,BD=BD,∠ABD=∠DBC则全等∠DEB=∠BCD=∠DEA=90°CD=ED又∠A=∠A,∠DEA=∠ACB所以,△AB
证明:∵∠ACB=90°,CD垂直AB于D∴∠ADC=90,∵∠DAC=∠CAB∴△DAC∽△CAB,则BC:AC=DC:DA∵在RT△ADC中,DE⊥AC∴DC²:DA²=CE:
⑴连接CD,∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵D为AB中点,∴AD=BD=CD,CD⊥AB,∠DCA=∠DBC=45°,在ΔDAE与ΔDCF中:DA=DC,∠A=∠DCF=45°
证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A
易得,三角形ACD相似于三角形CBD,则AC:BC=CD:BD,又可证三角形CDE相似于三角形BDF,则DE:DF=CD:BD,所以可得,AC:BC=DE:DF
设时间为x则面积S=1/2(8-1.5x)2x解得x=2/3(31^0.5-4)其中"31^0.5"为31开方
设AC,BD交点O若∠A0D
延长BC至E,使CE=AD,连结DE.∵AD∥BC,∴四边形ACED是平行四边形,∴AC∥.DE,∴∠ACB=∠DEB,∵AC=BD,∴BD=DE,∴∠DBC=∠DEB,∴∠DBC=∠ACB.
(一)16-6t(二)全等,在△BPD和△CQP中BP=CQ=6∠B=∠CBD=½AB=20÷2=10CP=BC-BP=16-6=10BD=CP∴△BPD≌△CQP(SAS)(三)如果不相等
过点D,作DH//CF,因为D是BC的中点,所以FH=BH,又因为E是AD的中点,所以AF=FH在直角三角形ACD中,E是斜边AD的中点,CE是斜边上的中线,所以有:CE=AE=ED又因为FG//AC
提示:过D作DE∥AC交BC的延长线于E,则四边形ACED为平行四边形,∴AC=DE,AC∥DE.∴∠E=∠ACB,DB=DE=AC,∠DBC=∠E,∴∠DBC=∠ACB.
(1)证明:∵∠ACB=∠DBC,∴OB=OC,∵AC=BD,∴OA=OD,∴∠OAD=∠ODA,∵∠DOC=∠OAD+∠ODA=∠OBC+∠OCB,∴2∠OAD=2∠OCB,∴∠OAD=∠OCB,∴
不是.△ABC中,AB=BC=AC,∠ACB=60°,说明ABC位置是定的.BD=AD,说明D在AB中垂线上,位置不确定.BP=AB,说明P在以B为圆心,AB为半径的圆上,位置不确定.BPD中有两点位
在AC上截取CE=BC,连接DE,则由题中条件可得△CDE≌△CDB,∴∠CED=∠B,BD=DE,又AC=BC+BD,∴AE=BD,∴AE=DE,∴∠A=∠ADE,又∠B=∠CED=2∠A,∠A+∠
/>∵∠ACB=90,CD平分∠ACB∴∠ACD=∠BCD=∠ACB/2=45∵DE⊥BC,DF⊥AC∴矩形CEDF且DE=DF(角平分线性质)∴正方形CEDF∴S四边形CEDF=CE²=4
证明:延长BD交AE于M,∵∠ACB=90°,∴∠ACE=180°-∠ACB=180°-90°=90°,∴∠DCB=∠ACE,在△ACE和△BCD中∵AC=BC∠ACE=∠DCBCE=CD,∴△ACE
过点D作DE⊥AB,交于E可以证明△ACD≌△AED∵AC=BC,∠ACB=90°∴∠B=45°∵DE⊥AB∴ED=EB∵AC=AE,CD=DE=EB∴AC+CD=AE+EB=AB