如图,ac,bd为圆o的两条线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:18:26
如图,ac,bd为圆o的两条线
如图,ab为圆o的直径,ab=ac,bc交圆o于点d,ac交圆o于点e,角bac=45度,求bd与dc相等

再答:其他条件是烟雾,呵呵再答:谢谢好评哈

如图,以圆o的直径BC为一边作等边三角形ABC,AB,AC交圆O于D,E两点,试证明BD,DE,

连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC

如图 圆o的弦ac垂直于bd 且ac=bd 若ad=二倍的根号二 求圆O的半径

第一题:因为两条弦互相垂直且相等,所以AD=BC,∠CAD+BAD=90°;连接CD,则弧AD和弧BC所对圆周角为(180°-90°)/2=45°;所以圆半径R=2AD/sin45°=2*2√2*√2

已知:如图,AB为圆O的直径,BD=CD,交圆O于点D,AC交圆O于点E.

连接AD,则AD⊥BC,∵BD=CD,∴AB=AC,∠BAD=∠CAD=1/2∠BAC.°∵∠EBC=20°,∴∠EAD=20°即∠CAD=20°,∴∠BAC=2∠CAD=40°;(2)证明:由(1)

已知如图,四边形ABCD是矩形,对角线AC,BD相交于O,求证点ABCD在以O为圆心的圆上

证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A

已知,如图,AB为圆o的直径,AB=AC,BC交圆o雨点D,AC交圆o于点E,∠BAC=45° (1)求证:BD=CD

连接AD因为AB是圆O的直,点D在圆上所以角ADB=90°,即AD⊥BC又因为AB=AC所以点D为BC中点所以BD=CD

如图,AB是圆O的直径,BD是圆O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE垂直于AC,垂足为点E

(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵DC=BD,∴AB=AC.∵∠BAC=60°,由(1)知AB=AC,∴△ABC是等边三角形.在Rt△BAD中,∠BAD=30°,AB=8

如图,AB是圆O的直径,BD是圆O的弦,延长BD到点C,使BD=DC,连接AC,过点D作DE⊥AC,垂足为E

1.连接AD,因为AB为直径,所以∠ADB=90(圆周角),所以ADBC,又因为DC=BD,所以ΔABC为等腰三角形,AB=AC.2.连接OD.则OD=OB,所以∠B=∠ODB.因为∠B=∠C,所以∠

如图,已知菱形ABCD中,对角线AC,BD相较于点O,菱形的周长为40CM,AC=12cm,求BD的长

因为菱形ABCD,AB=BC=CD=AD,AC垂直于BD周长=40CM,AB=BC=CD=AD=10cm因AC=12CM,所以AO=6CMAC垂直于BD,三角形AOB为RT三角形AB*AB=BO*BO

如图,AC,BD是圆O的两条弦,且AC垂直BD,圆的半径为0.5,求AB^2+CD^2的值

连结AO,延长AO交圆O于F,连结BF、CF,因为AF是圆O的直径所以,∠ABF=∠ACF=90°(直径所对的圆周角是直角)即AC⊥FC因为AC⊥BD所以,FC∥BD(垂直于同一条直线的两条直线平行)

如图,两个圆都以点O为圆心,求证AC=BD.

作OE⊥AB由垂径定理所以AE=BE,且CE=DE所以AC=BD很高兴为您解答,如果本题有什么不明白可以追问,互相帮助,祝新年快乐

如图,圆O的半径为2,弦BD=2根号3,A为弧BD的中点,E为弦AC的中点,且在BD上,求四边形ABCD的面

图呢,哥们再问:你不是做过了吗再答:我做过什么了啊--再问:是你打的啊说明一下我是女的不是哥们再答:我错了我什么也没说再问:好吧给你看一下图

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图AB为圆O直径,BD切圆O于B点,弦AC的延长线与BD交于D点,若AB=10,AC=8则DC长为

设CD=x面积2S三角形abd=AB*BD=AD*BC故6*(8+X)=10*根号(X^2+36)解方程:4x^2-36x+81=0(2x-9)^2=0x=4.5所以长为4.5

如图,AB为圆O切线,弦AC平行OD,BD切圆O于B,连接CD

假设半径为rAB=2r,OB=r连接BC由于AC‖OD则∠BAC=∠BOD因为BD为切线所以∠OBD=90°=∠ACB得到ΔACB与ΔDBO相似所以AC/AB=OB/OD也就是2/(2r)=r/6得到

如图:AB为圆O的直径,AB=AC,BC交圆O于点D,AC交圆O于点E,角BAC=45度.求证:BD=CD

D在圆上,AB是直径∴∠ADB=90°即AD⊥BD又AB=AC∴AD是BC的中垂线故BD=DC

如图,已知AB是圆O的直径,C是圆O上的一点,连结AC并延长至D,使CD=AC,连结BD,作CE⊥BD,垂足为E.

1、AB=BD∵AB为直径,故∠ACB=90°,即BC⊥AD,又AC=CD,故BC为AD的中垂线,即△ABD为等腰三角形,故AB=BD2、连接OC,O为AB的中点,C为AD的中点,故OC平行且等于1/