如图,AB炜圆O的直径,F为弦AC的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:02:06
如图,AB炜圆O的直径,F为弦AC的中点
如图,AB是圆心O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F.

1证明:过O点做OH垂直CDH为垂足因为OH垂直CD所以CH=DH因为OH垂直CDAE⊥CD,垂足为E,BF⊥CD,垂足为F所以EH=FH因为CH=DHEH=FH所以EC=DF2设直线BF交圆于G点连

如图,AB为圆O的直径,CD⊥AB于点E,交圆O于C、D两点,OF⊥AC于点F

(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等

如图,AB为圆O的直径,CD垂直于点D,OF垂直于AC于点F

一:①:BC=BD②:BC=根号(AB平方-AC平方)③:BC=根号(CE平方+BE平方)二连结CO∵∠D=30°又∵∠COB与∠D同弧∴∠COB=2∠D=30º×2=60º∴∠C

如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F.

1.连接OCCD⊥AB于点E,∴BC=BD(垂径定理)∴∠BCD=∠D=30°(等弦所对的圆周角相等)又因∠BEC=90°,BC=1∴BE=BC/2=1/2CE=√(BC²-BE²

如图,已知AB为圆o的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.

∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA = EC.

1、连接BC,则:∠EAC=∠ECA=∠BAC=∠BCA所以:△ABC∽△ACE所以:AB/AC=AC/AE所以:AC²=AB*AE2、连接BC,BO则:∠ABC=∠BAC而∠PEB=∠EA

如图,AB为圆O直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,且DE=DF

1)证明:DE=DF,则∠EDF=∠DFE=∠CFO.连接OC,OE,OC=OE,则∠OCE=∠OEC.又点C为半圆AB的中点,则OC⊥AB.∴∠OCE+∠CFO=90°,则∠OEC+∠EDF=90°

如图,AB为⊙O的直径,弦CD⊥AB于点E.

(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,

如图,AB为圆O的直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,

连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)

如图,AB为圆O的直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,且DE=DF

延长AO并圆O于M,连接EM.CM为直径,则∠CEM=90°=∠COF;∠ECM=∠OCF.∴⊿CEM∽⊿COF,EM/EC=OF/OC=1/3.设EM=X,则CE=3X.EM^2+CE^2=CM^2

已知:如图,AB、CD为圆O的直径,弦CE平行AB .DE交AB于F,求证,EF=DF

证明:∵CD是⊙O的直径∴∠CED=90°(直径所对的圆周角是直角)∵CE//AB∴∠AFD=∠CED=90°∵AB是⊙O的直径∴EF=DF(垂径定理:垂直于弦的直径平分弦及弦所对的两条弧)

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.

(1)证明:∵AB为⊙O的直径,∴∠ACB=90°(1分)∵CD⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB(2分)又∵∠A=∠D,∴△ACB∽△DEB.(3分)(2)连接OC,则OC=OA,(4

如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF

证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图,已知AB为⊙O的直径,半径OC⊥AB,弦DE垂直平分OC于F,试求∠CBD的度数

连接OD,DF⊥OF,2×OF=OC=OD,所以∠DOF=60°,因为OC⊥AB所以∠DOA=30°,因为△DOB为等腰三角形,∠DOA为外角,等于∠ODB+∠OBD,所以∠DBA=15°,因为∠CB

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的