如图,AB是圆的直径,CD为弦,CD垂直AB于E,若cd=6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:07:09
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
∵DE是⊙O的直径∴AC=BC=1/2AB根据相交弦定理AC*BC=CE*CDCD=AC*BC/CE=3*3/1=9AB=CD+CE=9+1=10OC=1/2AB-CE=5-1=4有没办法证明DE与C
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
作OH垂直DE于H,圆,CH=HDAE⊥CD,垂足为点E,bf⊥CD,OH垂直DE,OA=OB,梯形中位线,EH=HFDF=CE
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).
有两个l连接AC,OC,过点O作OE垂直于AC,垂足为E,AB垂直于CD,垂足为F.,因为OA=4=OC,CF=CD的一半,所以CF=2乘以根号3.所以OF=2,AF=4+2=6.然后可求OE=2,所
证明:因为OA=OC所以∠ACO=∠A因为AB为圆O的直径,CD是弦,且AB垂直CD于E所以弧BC=弧BD所以∠A=∠BCD(等弧所对的圆周角相等)所以∠ACO=∠BCD供参考!JSWYC
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
10、∵OA=OC∴∠OAC=∠ACO=40°∵AB是⊙O的直径,AB⊥CD∴弧BC=弧BD(垂径定理:垂直于弦的直径,平分弦及弦所对的的两条弧)∴∠BCD=∠OAC=40°(同圆内,等弧所对的圆周角
取CD的中点M,连接OM,OM是CD的弦心距,OM垂直于CD,AE垂直于CD,根据三角形相似,OM/AE=OP/AP=OP/(10+OP),整理得OP=10OM/(AE-OM)OM垂直于CD,BF垂直
证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)
(1)连接BC∵AB是直径∴∠ACB=90º∵AB=2、AC=√3∴BC=1∴∠A=30º(2)连接OC∵CD⊥AB、AB是直径∴∠BOC=2∠A=60º∴B⌒C=60/
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC
阴影是哪一部分啊?出来了.面积是4π/9cm方圆心为O,连接AO、BO,因为AB//CD,所以△ABO面积等于△ABC面积,因为