如图,AB是圆O的直径,OD垂直弦BC于点F,交圆O于点E,连结CE,AE,CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:51:36
如图,AB是圆O的直径,OD垂直弦BC于点F,交圆O于点E,连结CE,AE,CD
已知,如图,AB是圆O的直径,C是圆O上一点,OD垂直BC于点D,过点C作圆O的切线,交OD的延长线于点E,连接BE

  (1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=

如图ab是半圆的直径 ac为弦 od垂直ab交ac于点d 垂足为o 圆o的半径为4 od为3 求cd

ad=√(4^2+3^2)=5ab=4*2=8od=3oa=4△aod∽△acbac:oa=ab:adac=oa*ab/ad=4*8/5=6.4cd=ac-ad=6.4-5=1.4

如图,AB是圆O的直径,BC是弦,D为弧AC中点,求证OD平行BC

先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A

如图,AB是圆O的直径,若弧CD=弧BD,求证:OD‖AC

证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,AB是圆O的直径,CB是铉,OD⊥CB于点E,交圆O于点D,连接AC,AD

2、CE=EB=4,OE=R-ED=R-2OB^2=OE^2+EB^2R^2=(R-2)^2+4^2R=5

如图 AB是圆o的直径,AC为弦,OD‖BC,交AC于点D,

OD‖BC  →△AOD∽△ABC  →OD/BC=AO/AB=1:2       &nb

如图,AB是圆O的直径,C是圆O上一点,OD是半径,且OD‖AC,求证:弧CD=弧BD

证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD(2)连接OC∵弧CD=弧BD∴∠COD=∠BOD∵OA=OC∴∠A=∠C∵∠CO

如图,AB、AC分别是⊙O的直径和弦,OD⊥AB,与AC相交于点D,OD=5cm,求弦AC

设半径为r,则将BC/AC=5/r代入BC^2+AC^2=4r^2得AC=2r^2/(25+r^2)^0.5BC=10r/(25+r^2)^0.5条件好像不足,无法计算出具体值

已知如图,MN是圆O的弦,AB是圆O的直径,AB垂直于MN,垂足为点P,半径OC,OD分别交MN于点E,F,且OE等于O

∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直

如图,AB是⊙O的直径,C是⊙O上一点,OD是半径,且OD∥AC.求证:CD=BD.

证明:连接OC,∵OD∥AC,∴∠BOD=∠A,∠COD=∠C,∵OA=OC,∴∠A=∠C,∴∠COD=∠BOD,∴CD=BD.

如图.PAB,PCD是圆O的两割线,AB是圆O的直径,AC平行OD,求证CD=AC

:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD

如图,AB是圆O的直径若弧CD与弧BD相等,则OD//AC,

平行设od垂直平分bc于eoa=obeb=ec所以平行

如图,已知AB是圆O的直径,OC,OD是半径,AB垂直于CD,角COD等于100度,求角BOD

130度再问:过程麻烦写下,谢谢哈再答:因为AB垂直CD易得出角COA等于角AOD(相似三角形)即角COB等于角DOB因为劣角COD等于100°可得优角为260°角BOD等于优角COD的一半即130°

已知如图,ab是⊙o的直径,od垂直于ab,垂足为o,db交⊙o于点c

图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&

已知,如图,AB是圆o的直径,C是圆o上的一点,OD⊥BC,过点c作圆o的切线,交OD的延长线与E谢谢了,

(1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=2/3AB=2OB=2*

如图,AB时圆O的直径,AD是圆O的切线,点C在圆O上,BC平行OD,AB=2,OD=3求BC的长

是不是上图的样子? 证明过程如下“连结A.C   因AD是切线 ∠DAO=90°  ∠ACB是直径所对的圆周角也是90°