如图,AB是圆O的直径,CA与圆O相切于点A,连接OC交圆O于D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:15:59
连结AE,EO则:∠BEA=90°,∠BAC=90°证得∠B=∠C=45°所以∠EOA=90°三角形CEA为等腰直角三角形,EF为斜边中线、高四边形OEFA为正方形,EF垂直OE,所以EF是圆的切线
证明:连接OE,OG,DE∵CD是△ABC的边AB上的高∴∠BDC=∠ADC=90°∵点G是AD的中点∴AG=GD又∵OC=OD∴OG是△ACD的中位线∴OG=1/2AC∵CD是⊙O的直径∴∠AED=
ME的平方=AM*BM又因为角CAB=CAM,ADB=AMC=90度,所以角C=B所以三角形AMC与NMB相似所以AM:MN=MC:MB所以AM*BM=MN*MC所以ME平方=MN乘MC成立好好加油啊
因AB为直径ac为切线所以角bac为直角因af=fc(f为ac中点)ao=bo(两者均为半径)所以fo平行且等于二分之一倍的cb又因为ae垂直于bc所以ae垂直fo于G点所以角aof=角eof(等腰三
当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s
根据题意,连接OD,△ODC为直角三角形,所以,OD^2+CD^2=OC^2因为OD=R,OC=R+1,CD=√3×R所以,R^2+(√3R)^2=(R+1)^2R^2+3R^2=(R+1)^24R^
解题思路:圆解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?a
证明∵AB是直径∴AD⊥BD∵CA⊥面ADB∴CA⊥BDCA∩AD=A∴BD⊥面CAD∴BD⊥CD如果你认可我的回答,请点击“采纳回答”,祝学习进步!手机提问的朋友在客户端右上角评价点【评价】,然后就
郭敦顒回答:(1)∵AB是⊙O的直径,半径OC⊥AB,且OC是⊙O₁的直径,∴⊙O₁与AB相切于O,⊙O₁与⊙O相切于C.(2)∵AB=8,⊙O₂分别与
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
∵CA切⊙O于A,∠C=45°,∴△ABC是等腰直角三角形.BC=AB*√2=2√2..连接AD,则AD⊥BC,且AD=BD=BC/2=√2,因为AD弦上的弓形与BD弦上的弓形面积相等,所以阴影面积=
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
先自己画个图,标准点,再看题目
延长CM交⊙O于F∵AB是圆O的直径∴AC⊥BD,(那么多相似三角形我不全证了)∵CE*CF=CD*AC(割线定理),CE=CM-ME,CF=CM+ME∴(CM-ME)*(CM+ME)=CD*AC,即
1、AB=AC连接OD∵OB=OD∠ABD=∠BDO=∠BCF∴OD//CF∵DE⊥CF∠ODE=90°∴DE切圆2、∵△DEF≌△CDE∴EF=CE=4/5×CD=4/5×BD=4/5×4/5×AB
证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°
因为【AB=AD=AO】由圆的性质得【AB=AD=AO=BO】所以【角BDA=角ABD,角BDA+角ABD=角BAO】【三角形ABO是等边三角形】所以【角DBO=ABD+ABO=0.5*BAO+ABO
∠ABD=30°---∠OBD=30°---∠ODB=30°,∠ADB=90°∠BAD=60°-----∠ACD=∠ADC=30°------∠ODC=∠ADC+∠ADO=90°又OD是圆O半径,所以
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD