如图,AB是圆O的直径,AB=15,AC=9,则tan∠ADC=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:14:29
如图,AB是圆O的直径,AB=15,AC=9,则tan∠ADC=
如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图,AB是圆O的直径,弦CD交AB于点p,角APD=60°

过O点做OE垂直CD于E所以OE垂直平分CD因为AP=5,BP=1所以AB=6=直径,即半径=3所以OP=OB-BP=3-1=2因为角APD=60度,三角型OPE是直角三角型所以EO=根号3在三角型O

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

已知如图,AB、CE是圆O的直径,CD是圆O的弦,CD‖AB,求证弧EB=弧AC=弧BD

连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD

已知:如图,圆O中,AB是直径,CO垂直AB,D是CO的中点,DE//AB,求证:弧CE=2弧AE

连接OE因为OD=1/2OC=1/2OE所以角DOE=60°则角AOE=30°圆心角的比等于所对应的弧度的比就是这样,明白没?

如图,AB是圆o的直径,cd是圆o的弦,ab=6,角dcb=30°,求弦bd的长.

因为AB是直径所以∠ADB=90度又因为∠DAB=∠DCB=30度所以DB=1/2AB=1/2*6=3(30度角所对的直角边是斜边的一半)再问:谢谢啦再答:满意请采纳。再问:嗯嗯再问:好啦再问:还有了

如图,已知AB是圆O,直径,E是OB的中点,弦CD垂直AB于E,如果CE=3,那么直径AB长是()

E是OB中点,所以OE=1/2OB=1/2OC,由此可以得出∠OCE=30°,再用三角函数可以算出OC长2√3,那AB就是4√3,但你给的四个选项里没有.不是你打错了,就是卷子有问题.

如图,ab是圆o的直径,弦cd⊥ab于h,p是ab延长线上一点

∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧

如图,AB是圆O的直径,弦CD⊥AB于P.

1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

如图AB是圆O的直径

解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r

如图,AB是圆O的直径,点P是弧AB的中点

先自己画个图,标准点,再看题目

如图AB,CD是圆O的两条直径,弦CE平行于AB,求证AD=AE

连接EO因为CE平行AB,CO=EO得角OCE=OEC=DOA=AOE因为EO=OD,角DOA=AOE,AO为公共边所以三角形DOA与EOA全等则AE=AD再问:没有了很完美撒~顺便问一句……你认识E

如图,在圆O中,AB是圆O的直径,OC⊥AB,D是CO的中点

连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图 在圆o中 cd是直径 ab是弦ab⊥cd于M,OM=3,DM=2,求弦AB的长

OM平方+AM平方=OA平方AM平方=5*5-3*3=16AM=4AB=AM*2=4*2=8弦AB的长等于8.

如图,AB是圆O的直径,CD是圆O的弦,AB=6,∠DCB=30°,求弦BD的长

连接BD∵AB是直径,D在圆上∴∠ADB=90°∠A=∠C=30°∴BD=AB/2=3

如图已知AB是圆O的直径C是圆O上一点CD⊥AB求证1∠ACD=∠F 2AC

1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F