如图,AB是△ABC的外接圆圆O的直径,D是圆O上一点,DE垂直AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:12:53
如图,AB是△ABC的外接圆圆O的直径,D是圆O上一点,DE垂直AB
一道初中关于圆的题在△ABC中,AB=7,AC=6,AD垂直于BC,且AD=5,求△ABC外接圆圆O的半径r

利用外接圆半径公式a/sinA=b/sinB=c/sinC=2r(r为此三角形外接圆半径),得sin角ACB=AD/AC=5/6c/sin角ACB=2rc=AB=7则r=24/5=4,8

如图,直三棱柱ABC?A1B1C1中,AC?AB ,AB?2AA1,M是AB的中点,△A1MC1

再答:再答:再答:再答:本题考查两条线段的比值的求法,考查角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.再答:分析(1)取BC中点N,连结MN,C1N,由已知得A1,M,N,C1四点共面

1、(1)如图1所示,图中△ABC的外接圆的圆心坐标是______.并求该圆圆心到弦AC的距离.

第一题以前学的知识忘了差不多了~.二题还是比较简单的,△ABD是等边直角三角形,∠DAB=45°,那么∠FAD=∠DAB+∠EAB=60°.,△ABD是等边直角三角形,AB=2,显然可以算出AD的长,

一道关于圆的数学题如图,下列说法:1.图中△ABC外接圆的圆心坐标是(5,2);2.该圆圆心到弦AC的距离为√10;3.

1abbc垂直平分线焦点.2作垂线13根号10..3cuo过b作垂线叫ac中点正切1/genhao54自己慢慢算

如图,D是△ABC的一个外角平分线上的一点,求证:AB+AC

证明:在BA的延长线上取点E,使AE=AC,连接DC、DE∵AD平分∠CAE∴∠EAD=∠CAD∵AE=AC、AD=AD∴△AED≌△ACD∴DE=DC∵在△DBE中:BE<DB+DE,BE=AB+A

如图,P是等边三角形abc外接圆弧bc上任意一点,求证:pa=pb+pc

证明:在PA上取点D,使PD=PB,连接BD∵等边三角形ABC∴∠ABC=∠ACB=60,AB=BC∵∠APB,∠ACB所对应圆弧都为劣弧AB∴∠APB=∠ACB=60∴PD=PB∴等边三角形BPD∴

如图,三角形ABC中AD平分角BAC,其延长线交三角形ABC的外接圆圆O于点H,过H作EF平行BC交AC.AB的延长线于

画了图,但是上传不上.你看着图,因为AD平分角BAC,又是外接圆,所以∠BAD和∠BCH所对的是同一段弧.所以有∠BAD=∠CAD=∠BCH所以易证△AHC∽△CHD,所以CH²=DH×AH

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

已知:三角形ABC外接圆圆O上一点G是弧BC的重点,AE垂直BC,CF垂直AB,角BAC等于60度 求:(1)角BAE=

1.延长AO到HAH直径弧AC+弧HC=弧AH对90度角所以OAC+ABC=90ABC+BAE=90得角BAE=角CAO2.BOC=2BAC=120OBG,OCG等边三角形OA=OGAD//OG只需证

CE是三角形ABC外接圆圆O的直径,CD⊥AB AD*BC=CE*CD 若CD=6 AD=3 BD=8 求圆O半径

CD=6,BD=8,则BC=10.CD=6,AD=3,则AC=根号45三角形CBE相似于三角形CDA,所以CB/CD=CE/CA即:10/6=CE/根号45CE=5*根号5,圆的半径为5/2*根号5

如图,在Rt三角形ABC中,斜边BC=12,角C=30,D为BC的中点,三角形ABD的外接圆圆O与AC交于F点,过A作圆

证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA

如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆圆O

1,两个三角形相似要证明ED与CB平行要证明角CBE=BEDABC与BED都为等边三角形CBE=180-ABC-EBD=60=BED2连接OBOBC=30CBE=60OBE=OBC+CBE=90OB与

点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆圆O于点E,连接BE、CE

点I是△ABC的内心,所以AE平分∠BAC,∠BAE=∠CAE,那么弧BE=弧CE,∠BAD=∠ECD,又∠BDA=∠EDC△ABD与△CED相似,AB/CE=AD/CD=2,AD=6,所以CD=3

如图,在三角形ABC中,AB=6,AC=8,∠CAB=60°.求△ABC的内切圆圆I的半径和外接圆圆O的半径

过B作BM⊥AC可得AM=3BM=3√3在△BCM中用勾股定理BC=2√13内切圆圆I的半径为r1/2r(AB+BC+AC)=1/2×8×3√3r=(7√3-√39)/3外接圆圆O的半径过O点作AB,

如图,△ABC是等边三角形(1)用尺规做出△ABC的外接圆圆o,保留作图痕迹,不写做法(2)若△ABC的边长为6

三角形外接圆圆心是三边的垂直平分线交点,所以作其任意两边垂直平分线,这两条垂直平分线交点O,再以点O为圆心,OA为半径作圆,即可得到外接圆.第二问直接用正弦定理即可求解,这应该是初三的题目,我就用初三

已知RT△ABC的两条直角边为a和b,且ab是方程x-14x+48=0的两根,求RT△ABC的外接

1)、十字相乘法.x^2-14x+48=xx-14x-6(-8)=(x-6)(x-8)=0,x-6=0、x-8=0,x=6、x=8.即a=6、b=8.2)、勾股,c^2=a^2+b^2=6^2+8^2

如图△ABC,AD是BC边上的高,AB+DC=AC+BD求证△ABC是等腰三角形

证明:∵AD⊥BC∴AD²=AB²-BD²,AD²=AC²-CD²∴AB²-BD²=AC²-CD²∴

如图,△AB'C'是由△ABC经过某种变换后得到的图形.

这个题目可能不太完整,不知道坐标系里面的框框有没有意义(就是可以用来数吗?)不管这个的话,可以从A(x,y)开始解.然后,为什么P点是三维的点,而P'回到二维了呢?可能是打错了吧.我们从BB',CC'

如图,AB是△ABC外接圆圆O的直径,D是AB延长线上一点,且BD=1/2AB,∠A=30°,

∵BD=AB/2,AB=2OB,∴BD=OB,∵AB是直径,∴〈ACB=90°,(半圆上圆周角是直角)∵〈A=30°,∴〈ABC=60°,∵OB=OC=R,∴△OBC是正△,∴BC=OB=OC,∴BC