如图,AB为圆O的直径,点M是线段OA上一点,过点M做AB的垂线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:54:08
连接AN因为CN是直径所以∠CAN=90°所以∠N+∠ACN=90°又弦CM⊥AB所以∠B+∠MCB=90°又有同弧所对圆周角相等所以∠N=∠B所以∠ACN=∠MCB所以弧AN=弧MB
连接OC、OD,则OC=OD又OA=OB,M,N分别是AO,BO的中点,所以:OM=ON又CM⊥AB,DN⊥AB,则:∠OMC=∠OND=90°在Rt△OMC和Rt△OND中,OC=OD,OM=ON,
∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE
、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角形
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
OD‖BC →△AOD∽△ABC →OD/BC=AO/AB=1:2 &nb
连接OE,OM=OC/2=OE/2,OC垂直于AB,角OEM=30度.EF//AB,角AOE=角OEM=30度.[内错角]角EOC=90度-角OEM=90度-30度=60度.角CBE=角EOC/2=3
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
第一问:1)因为DC是圆O的切线,所以∠DCB=∠CAB2)因为AB是直径,所以∠BDC=∠BCA=90°3)由1)、2)可知△BCD相似于△BAC,于是BC/BA=BD/BC,即BC^2=BD*BA
先自己画个图,标准点,再看题目
题目CD⊥AD好像有文字错误,应该是CD⊥AB,请核实(1)连接OE,则OE⊥EF,
延长CM交⊙O于F∵AB是圆O的直径∴AC⊥BD,(那么多相似三角形我不全证了)∵CE*CF=CD*AC(割线定理),CE=CM-ME,CF=CM+ME∴(CM-ME)*(CM+ME)=CD*AC,即
∵AB是直径,∴∠C=90°又∵∠ABC=2∠A∴∠A=30°,∠ABC=60°又∵M为劣弧AC的中点∴∠CBM=∠ABM=30°∴AD=BD又BD=2CD∴AD=2CD你题中的AO=2CD应为AD=
大圆半径为2则小圆M半径为1C为OB中点则OC=OM=1CD为圆M的切线且MD=MC/2则直角△MDC中∠DMC=60则S△MDC=(根号3)/2在三角形ADM中,AM=DM外角DMC=60则∠DAM
(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM
证:(1)再问:tan(45-A)=(1-1/2)/(1+1/2)=1/3sin
)这是相交弦定理,连AC,EB,因∠CAB=∠CEB,又有对顶角故三角形AMC∽EMB,所以AM*MB=EM*MC2)在直角三角形CDE中,CE=√(CD^2-DE^2)=√(64-15)=7EM=A