如图,AB为圆O的直径,点C为圆O上一点,AE和过点c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:48:45
如图,AB为圆O的直径,点C为圆O上一点,AE和过点c
如图,AB为圆O的直径,CD⊥AB于点E,交圆O于C、D两点,OF⊥AC于点F

(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等

,如图,已知AB为圆O的直径,CE切圆O于点C,CD⊥AB于点D,求证CB平分∠ECD

连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的切线垂直,垂足为D

1.连接BC,∵CD是切线∴OC垂直DC∴AD平行于OC∴△DAF∽△OCF∴AF/FC=AD/OC连接BE交OC于G∵AB是直径∴∠AEB=90°,∵AB是直径∴BE平行于DC∴OG垂直BE∴OG=

已知,如图,ab是○o的直径,点p为ab延长线上一点,pc为○o切线,c为切点,bd⊥pc,

(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

如图,AB为圆O的直径,点C为弧AB的中点,弦CE交AB于点F,D为AB延长线上一点,

连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

如图,AB是圆O的直径 C为圆O上一点,AD和过C点的切线相交于点D

1、连接BC,∠DCA=∠CBA,从而证明三角形DAC相似于三角形CAB,于是∠ADC=∠ACB=直角2、AD:AC=AC:AB,所以ACxAC=80,AC的长度就是把80开方就行了

如图AB为圆O的直径C D为圆O上的点 OC垂直于AD CF垂直DB

∵AB是直径∴∠ADB=∠MDF=90°∵CM⊥AD,CF⊥DB(DF)即∠CFD=∠CMD=90°∴四边形CMDF是矩形∴DM=CF∠MCF=90°即CF是圆切线∴根据切割线定理:CF²=

如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.

(1)连接OC,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥CO,∴∠1=∠4.∵∠2=∠4,∴∠1=∠2.(2)做OE⊥AD,设半径为x,∵CD⊥AD,∴OE∥CD;又OC⊥CD,∴OC∥AD

如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

(1)证明:连接OC,∵C是⊙O上一点,DC是切线,∴OC⊥CD.又∵AD⊥DC,∴AD∥OC,∴∠DAC=∠ACO.又∵AO=OC,∴∠CAO=∠ACO,∴∠DAC=∠CAO.即AC平分∠DAB.(

如图,ab与圆o相切与点c,oa等于ob,圆o的直径为8厘米,ab等于10厘米,求oa的长.

因为:圆O的直径为8所以:OC=4因为:OA等于OB,AB与圆O相切与点C所以:三角形OAB是一个等边三角形,且C为AB中点,OC垂直于AB所以:AC=BC=5所以:OA=根号(OC的平方+AC的平方

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图,点C在以AB为直径的圆O上,CD⊥AB,垂足为P,设AP=a,PB=b

(1),设圆心O,AP=a,PB=b,AB=AP+PB=a+b,连接OC,OD,OC=OD=AB/2=(a+b)/2,OP=AO-AP=(a+b)/2-a=(b-a)/2,直角三角形OPC与直角三角形

如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线垂直,垂足为D,AD交圆O于点E,且AC平分∠DAB.

连接CO,根据一条弧所对的圆周角等于它所对的圆心角的一半,所以∠COB=2∠CAB由AC平分∠DAB,所以∠COB=∠DAB即CO∥AD∠ADC=∠OCB=90°经过圆心且垂直于切线的直线必经过切点所

如图,AB为圆O的直径,C为圆O上一点,AD和过点C的切线互相垂直,垂足为D,AD交圆O于点E 1.求证AC平分∠DAB

解题思路:直角三角形、圆的切线定理、三角形全等知识点解题过程:连接OC、OE∵AB为直径∴∠ACB=90∵DC为切线∴∠DCO=90∴∠DAC=∠OCB∵OC=OB,∠B=60∴等边三角形OCB,∠O