如图,abbccd分别与圆o相切于efg,且ab平行cd,bo=6cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:49:45
知识点:切线长相等.证明:∵AB、DC、CB分别与圆O相切,∴BE=BG,CG=CF,∴BC=BE+CF.
证法1:AB·PB-AC·PC=AB·PC-AC·PB(AB+AC)PB=(AB+AC)PCPB=PC;∵PA,PB为切线∴PA=PB=PC;∵AP⊥PC∴∠PAC=∠PCA=45°∠PAB=∠PBA
(1)在直角三角形AOD,COD中; 根据直角斜边(HL)证全等; OC=OA, OD=OD;三角
延长AC.过点G作AB的平行线,交AC延长线于点H.因为GH//AB 所以△CGH相似于等腰直角△ACB,△DGH相似于△ADF因为AC=BC=6 ∠ACB=90度 D为
(1).相等链接OD两点.由题可知,三角形ACB为等腰直角三角形,O为斜边AB中点,AC为圆的切线,则OD垂直AC,即OD平行于BC,推出角DOA=角CBA.因为角OFD=角ODF,所以角DOA=2倍
分析:由切线长定理知,AE=CE,FB=CF,PA=PB=2,然后根据△PEF的周长公式即可求出其结果.\x0d∵PA、PB分别与⊙O相切于点A、B,\x0d⊙O的切线EF分别交PA、PB于点E、F,
利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于
作OD⊥BC于D,连AD,AO⊥平面OBC,∴∠ADO是二面角A-BC-O的平面角,设A(a,0,0),B(0,b,0),C(0,0,c),a,b,c>0,∴BC=√(b^+c^),由OD*BC=OB
郭敦顒回答:(1)∵AB是⊙O的直径,半径OC⊥AB,且OC是⊙O₁的直径,∴⊙O₁与AB相切于O,⊙O₁与⊙O相切于C.(2)∵AB=8,⊙O₂分别与
同学啊,你确定这是中考题吗?怎么那么像高中的解析几何啊?我懒,不愿算了,我大概告诉你怎么算好不?圆的方程学过了吧?设圆的方程为(x-a)^2+(y-b)^2=r^2带入原点还有AB两点.求出a=1.b
OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3
易知R=4,r1=2令圆O2半径为r2连接OO2、O1O2过O2作O2D⊥OC,交OC于D依题并由勾股定理有:(r1+r2)^2-(r1-r2)^2=(R-r2)^2-r2^2解得r2=1
证明:∵四边形ABCD的边AB,BC,CD,DA分别与圆O相切与E,F,G,H∴AE=AH,BE=BF,CF=CG,DG=DH∴AH+DH+BF+CF=AE+BE+CG+DG∴AD+BC=AB+CD
连接OD因为AC与圆O相切所以OD⊥AC因为∠C=90°,AC⊥BC,OA=OB所以OD//BC,OD=BC/2=3所以OF=OD=3,∠ODF=∠BGF,∠DOF=∠GBF因为∠OFD=∠BFG所以
是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP
先连接O’E、O’C再把O、O’连起来再延长于OB相交D那么D就是AB与小圆的相切点即O’D=r且
OD=3即圆的半径,则,OF=3BF=3根号2-3接着求出BF/FAAD/DC=1接着利用截线DFG与三角形ABC的梅涅劳斯定理,求出CB/BG接着就易求CG了不知道这是什么程度的题目,用了梅涅劳斯定
三角形AFC和三角形ACB有共同的角A同时角ACB和角CBA所对的圆弧是相等的(对圆A来说线AC和线AD是半径故相等,对圆O来说他们是弦,弦相等即狐相等),所以这两个角也相等.相似可证.有相似三角形性
①因为O//PE,所以,∠EPG=∠POA(内错角),又因为PG是∠EPF的角平分线,所以∠EPG=∠FPG,所以,∠POA=∠FPG,所以AP=AO(等角三角形)②从O点作PF的垂线,设与PF的交点
假设这个对角线是AC,反正也无所谓.连接OM,因为圆O与BC相切于M,所以OM垂直于BC,由于都是半径,所以OM=OA;设OA=x,则OM=x,由于AB=1,所以对角线=根号2,OC=根号2-x,由于