如图,ab=ac,cd⊥ab于d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:13:07
如图,ab=ac,cd⊥ab于d
如图,已知AB为圆o的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.

∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).

已知,如图,AB⊥AC,AC⊥DC,AB=CD,求证AD∥CB

在三角形ACD与三角形CAB中AB=CD角DCA=角BAC(直角)AC=CA(公共边)所以这两直角三角形全等所以角DAC=角BCAAD//CB

如图,在△ABC中,AB=AC,BE⊥AC,CD⊥AB,BE与CD交于点O.

先证明三角形ABE、ACD全等:AB=AC,有一个公共角,各自有一个直角.这样就有角ABE=角ACD.等腰三角形两底角相等.这样角CBO=角BCO,可证明等腰.从全等可以得到AD=AE.公共边AO,各

1.如图①,△ABC中,AB=AC,CD⊥AB于D,则∠DCB等于( )

1、C作AM⊥BC于M点,△AMB∽△DCB,等腰三角形三线合一.2、D∠ADB是△ADC的外角,AD=CD,所以∠ADB=2∠ACD,AB=AC,∠ACD=∠ABC,所以∠ADB=180°/(5/2

如图AC、BD相交于点O,AC=BD,AB=CD.急)

最简便做法证明:连接AD三角形DAB与三角形ADC全等原因AD=ADAC=BDAB=CD{SSS}接着可以推出∠B=∠C

如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.

证明:如图,连接BC∵CD⊥AB于D,D是AB的中点,即CD垂直平分AB,∴AC=BC(中垂线的性质),∵E为AC中点,BE⊥AC,∴BC=AB(中垂线的性质),∴AC=AB.

如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E.求证:AB²/AC²=AC/

AB\AC=AD\AEAB^2\AC^2=AD^2AD\AE=AC\ADAD^2=AC*AEAB^2\AC^2=AC*AE\AE^2AB^2\AC^2=AC\AE很高兴能帮到你,望采纳谢谢再问:为什么

如图,已知AB⊥BD,AC⊥AB,AB=AC,求证:BD=CD

看不到图啊再问:再问:再问:能不能多帮我做啊?再答:像素太低了,看不清楚啊再问:好吧,我一个拍再问:再答:2题是边边边定理,三条边全部相等再问:额(⊙o⊙)…再问:要证明

如图,已知AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,请说明BE=CD.

理由:∵AB=AC,∠ADB=∠AEC=90°,∠A=∠A,∴△ABD≌△ACE.∴AD=AE.∵AC=AB,∴AC-AD=AB-AE.∴BE=CD.

如图,已知AC,BD交于点O,AB平行CD,OA=OC,求证AB=CD

证明:∵AB//CD(已知)∴∠A=∠C,∠B=∠D(两直线平行,内错角相等)又∵OA=OC(已知)∴△ABO≌△CDO(AAS)∴AB=CD(全等三角形对应边相等)

如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF

1、∵AD=ADAB=ACBD=CD∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD即∠EAD=∠FAD∵DE⊥AB于点E,DF⊥AC于点F∴∠AED=∠AFD=90°∵AD=AD∴△ADE≌△AD

已知:如图,AB=AD,CB=CD,AC与BD相交于点O,求证:AC⊥BD

证明:∵AB=ADBC=DCAC=AC∴⊿ABC≌⊿ADC∴∠BAC=∠DAC∴AC⊥BD(等腰三角形的顶角平分线也是底边上的高)

如图AB是⊙O的直径弦CD⊥AB于P 如果弦AE交CD于F,求证AC²=AF×AE

证明:延长CF交⊙O于G,连接AG、EG,∵CF⊥AB于点D,AB为⊙O直径,∴AC=AG,∠C=∠AGC.∵∠E=∠C,∴∠AGC=∠E.∵∠GAF=∠EAG,∴△GAF∽△EAG.∴AG:AE=A

已知.如图.ab=ac,cd⊥ab于d,be⊥ac于e.be⊥ac于e,be,cd相交于f,连接af,求证∠b

证明∵ab=accd⊥ab于d,be⊥ac于e∠adc=∠aeb=90∠dac=∠ead∴△adc全等△aeb∴ad=ae∠adc=∠aeb=90af=af∴△adf全等△aef∠baf=∠caf

如图,AB⊥BC于点B,AD⊥DC于点D,若CB=CD连接AC,BD.求证:AC⊥BD,且∠AB

在△ABC和△ADC中,∠ABC=∠ADC=90°,AC为共边,CB=CD,所以△ABC=△ADC所以AB=AD,∠BAC=∠DAC,即∠BAO=∠DAO在△ABO和△ADO中,AB=AD,AO为共边

如图,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证DE=DF,

证明:AB=AC,DB=DC,AD=AD,根据SSS判定定理,得△ADB≌△ADC,∴∠DAB=∠DAC,又∵∠AED=∠AFD=90°,∴∠ADE=∠ADF,又∵AD=AD,∠DAE=∠DAF,∴△