如图,37-9,AB是园心O的直径,C是弧BD的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:12:57
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
/>连接AC、BC则∠ACB=90°∵CD⊥AB∴△BCD∽△CAD∴CD²=AD*BD=6*3=18∴CD=3根号2再问:如图,点A、B、C、D都在圆上,弧BD=弧DC,AD与BC相交于点
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
∵∠OBA=∠OCA,且∠OAB=∠OCB,又∵∠OBA=∠OAB,∴∠OBA=∠OCB,∵∠BOC=∠BOC,∴△OBD∽△OCB(A.A.),∴r/OC=BD/BC,∴r×BC=OC×BD,同理,
设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2-πr2=9π,即R2-r2=9,
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
解题思路:利用三角形相似分析解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/r
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
先自己画个图,标准点,再看题目
证明:∵OA=OB,CD⊥AB∴∠AOD=∠BOD(三线合一)∵OD=OD∴△AOD≌△BOD(SAS)∴AD=BD数学辅导团解答了你的提问,理解请及时采纳为最佳答案.
(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当
∵OA=OB=AB∴△OAB是等边三角形,∠AOB=60°,OC⊥AB交⊙O于C∴∠AOC=30°∴∠ABC=12∠AOC=15°.故答案为:15.
连接EO,DO=CO/2=EO/2,则角DOE=60度,角AOE=30度,因此CE弧=2EA弧
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
图是不是这样?如图做辅助线AC,因为△ABC是圆的内接三角形,所以角ACB是直角又因为∠B是ACB和DOB的公共角,所以RT△ABC∽RT△DOB所以AB/BC=BD/BO即2BO/BC=BD/BO&
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的
OA=OC∠OAC=∠OCAOC平行AB∠AOC+∠DAB=180°∠AOC+∠OAC+∠OCA=180°∠OCA=∠CAB∴AC平分∠DAB第二问还没出来-=容易求得AC平分∠DAB所以弧BC=弧C
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC