如图,,在Rt△ACB中,角C=90°,BE平分∠ABC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:34:35
∵是直角三角形∴a²+b²=c²;∴b=√(c²-a²)=√(169-25)=12;∴AC×BC=AB×CD;CD=a×b÷c=12×5÷13=60/
AB'=AB=4B'C=AB'-AC=AB-ACAC=1/2AB=2B'C=4-2=2
证明:过点D作DE⊥AB于E,∵DE⊥AB,∴∠AED=90°,∴∠ACB=∠AED=90°,又∵∠CAD=∠BAD,AD=AD,∴△ACD≌△AED,∴CD=ED,AC=AE,∵∠ACB=90°,A
∠A'=∠A=35º,∠B'=∠CBA=∠B'BC=55º,∠B'CB=70º,∠BCD=20º,∠BDC=75º再问:#是什么意思再答:太不具体,说
=12cd=60/13再问:我要过程。。再答:b=根号(c²-a²)=根号(13²-5²)=12sinA=a/c=CD/b所以5/13=CD/12CD=5/13
因为∠A=35°,所以∠B=90-35=55度.因为BC=B'C,所以∠CB'B=∠CBB'=55度,∠B'CB=180-55-55=70度.那么∠DCB=90-70=20度,∠ABC=55度.所以∠
过G做AB垂线交于HCF=AC*tan(∠CAB/2),AD=AC*cos(∠CAB),DE=GH=AD*tan(∠CAB/2)=AC*cos(∠CAB)*tan(∠CAB/2),GB=GH/cos(
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
1.相等,在直角三角形ACD中应用CD^2=CE*CA,在直角三角形BCD中应用CD^2=CF*CB,就得到CE*CA=CF*CB.2.成比例,因为四边形CEDF是矩形,从而OC=OD=OE=OF,所
证明:∵∠ACB=90∴a²+b²=c²,S△ABC=a×b/2∵CD⊥AB∴S△ABC=c×h/2∴a×b/2=c×h/2∴a×b=c×h∴ab=ch∴1/a²
当α=90°时,四边形EDBC为菱形∵α=90°,∴ED‖BC,∵CE‖AB,∴四边形EDBC为平行四边形点O是AC的中点,∴点D是AB的中点,BD=1/2ABRt△ABC中,∠ACB=90°,∠B=
角ACB=90°,角ACB=30度这个角很神奇
∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠
根据旋转的性质,可知,∠BCB′=30°,∠B=60°,∴∠CDB′=90°.∵BC=BC′=2cm,∴B′D=1,DC=3,∴S△CDB′=32cm2.
因为△ACD≌△ADE所以AE=AC=5由勾股定理可知,AB等于13BE=AB-AE=8△BED≌△BAC所以DE/BE=AC/BCDE=BE*AC/BC=10/3所以CD=DE=10/3勾股定理得A
∵∠ACB=90°,∠A=30°,∴AB=AC÷cos30°=43÷32=8,BC=AC•tan30°=43×33=4,∵BC的中点为D,∴CD=12BC=12×4=2,连接CG,∵△ABC绕点C顺时
PQ最小值:2倍根号2-1再问:过程呢
看了你的图,发现是我错了,CB=CB1,所以角B1=角CBB1,因为角B1=90°-40°=50°,所以旋转角度角B1BC=180°-2*50°=80°,正确答案应该是B,你自己演算一下,没错的话给采