如图 等边三角形abc边长是2 de分别为abac的中点延长bc至点f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:52:19
如图 等边三角形abc边长是2 de分别为abac的中点延长bc至点f
如图,三角形abc是边长为3的等边三角形.

延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN

如图,圆O的内接圆等边三角形ABC的边长为2倍根号3

没看到图啊,题目也不完整再问:P是劣弧AC上的一点(动点),AP,BC的延长线交于一点D求(1)圆的半径再答:过A做BC垂线交BC于E则BE=根号3三角形OBE中角OBE=30度,BE=根号3所以半径

如图,已知△ABC为等边三角形,D为AC上一点,∠1=∠2,BD=CE,那么△ADE是等边三角形么,

∵△ABC是等边三角形∴AB=AC,∠BAC=∠DAB=60°∵∠1=∠2BD=CE∴△ABD≌△ACE(SAS)∴∠EAC=∠EAD=∠DAB=60°AE=AD∴∠AED=∠ADE=(180°-∠E

如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:

∵DE是它的中位线,∴DE=12AB=1,故(1)正确,∴DE∥AB,∴△CDE∽△CAB,故(3)正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故(4)正确,∵等边三角形的高=边长×sin

如图,等边三角形ABC的边长为5cm,点D、E分别在CB、AC的延长线上,DB=2cm,角ADE=

60度能证明三角形ABD和三角形DCE相似,所以对应角相等即角DAB等于角EDC因为角ABD是等边三角形的一个外角所以角ABD等于120度所以角DAB+角ADC等于(180-120=60)度因为角AD

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为(  )

连接OA,并作OD⊥AB于D,则∠OAD=30°,OA=2,∴AD=OA•cos30°=3,∴AB=23.故选C.

如图,已知圆o是边长为2的等边三角形ABC的内切圆,则圆O的面积

显然圆的半径=1/tan30=根号3于是面积为3π再问:说仔细点再答:⊙﹏⊙b汗开始比错了是π/3角BAC=60度因为等边三角形角EAB=30度且DE垂直AD(DE为内切圆半径)D为AB中点所以在直角

如图,三角形ABC是边长为2cm的等边三角形,延长CB到D,使BD=CB,延长BC到E,使CE=CB.求三角形ADE的周

作AF垂直DE于FAF=根号3利用同理可求出AD=2倍根号3所以周长=2倍根号3+2倍根号3+6=6+4倍根号3

如图,等边三角形ABC的边长为2,D是BC边的中点,PA⊥AB,PA⊥AC,且PA=2,求PD与平面ABC所成角的正切值

等边三角形ABC∵D是BC中点∴AD⊥BC,AD=2*sin60°=√3∵PA⊥AB,PA⊥AC∴PA⊥面ABC∴PA⊥BC∴BC⊥面PAD∴∠PDA即PD与平面ABC所成角tan∠PDA=PA/AD

如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向

解题思路:(1)由平移的性质可知BE=2BC=6,DE=AC=3,故可得出BD⊥DE,由∠E=∠ACB=60°可知AC∥DE,故可得出结论;(2)在Rt△BDE中利用勾股定理即可得出BD的长.解题过程

如图,等边三角形ABC的边长为8,M是三角形ABC内一点,MD//AC,ME//AB,MF//BC,点D、E、F分别是A

延长EM交AC于G,过F作FK∥EM,交BC于K得平行四边形ADMG,所以DM=AG,得平行四边形EMFK,所以ME=FK,在等边三角形MFG中,MF=FG,在等边三角形CFK中FK=FC所以MD+M

如图,△ABC是边长为2的等边三角形,点O是△内任意一点,OD⊥AB于D,OE⊥BC于E,OF⊥AC

没看到图呢?请问你求什么?答案一:求证:OD+OE+OF=BC.延长FO交BC于G,得平行四边形DBGO和正三角形OGE,所以OD=GG,OE=GE因为FOEC是等腰梯形,所以OF=EC所以BC=BG

如图,已知△ABC是等边三角形

解题思路:过D作DM∥AB交BC于M,则△CDM为等边三角形,得CD=DM,而BE=CD,得到DM=BE,易证得△FDM≌△FEB,根据全等三角形的性质即可得到结论;解题过程:varSWOC={};S

已知,如图,圆形O是等边三角形ABC的外接圆,且其内切圆的半径为2厘米,求△ABC的边长及扇形AOB的面积

等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=

如图,等边三角形ABC的边长是1,点D,E,F分别在AB,BC,CA上,且△DEF是等边三角形.设AD=X,△DEF的面

由⊿ABC和⊿DEF都是等边三角形可知⊿ADF≌⊿BED≌⊿CFE,⊿ADF中,AD==x,AF=1-x,∠A=60°,据余弦定理DF²=X²+(1-x)²-2x(1-x

如图已知三角形ABC是等边三角形,DE垂直BC于E,EF垂直AC于F,FD垂直AB于D.若等边三角形的边长为6求AD的长

1、答案是22、由题设可推出三角形DEF内角均为60度,即为等边三角形.3、DEF为等边三角形,那么DE=DF=EF,由此可推出,三角形ADF、CEF、BDE全等.4、由题设轻松可知三角形ADF、CE